Skip to main content
Log in

Biocompatibility and Antimicrobial Investigation of Agar-Tannic Acid Hydrogel Reinforced with Silk Fibroin and Zinc Manganese Oxide Magnetic Microparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, a three-dimensional cross-linked hydrogel was synthesized based on agarose (Agr) and tannic acid (TA) biopolymers which are cross-linked with Zn2+ ions. Also, the extracted silk fibroin (SF) and zinc manganese oxide (ZnMn2O4) magnetic microparticles were added to the composite to be utilized in biomedical applications. It was aimed to prepare a biocomposite based on the natural materials due to their various biological characteristics owing to their less toxicity and reduced hemolysis. Therefore, this novel biocomposite scaffold (Agr-TA/SF/ZnMn2O4) demonstrated desirable biological capacity characterized by cell viability approach, hemolysis assay, and anti-biofilm activity. Due to the cell viability test results, after 3 and 7 days, the viability of the Hu02 cell in the presence of Agr-TA/SF/ZnMn2O4 scaffold was 95.38% and 93.83%, respectively. Since the hemolytic activity below 5% is considered hemocompatible, the prepared biocomposite with 4.97% hemolytic activity is totally hemocompatible. Moreover, according to the considerable anti-biofilm activity, along with restraining the P. aeruginosa biofilm formation, this cross-linked hydrogel has been administrated as an excellent candidate for biological applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Eivazzadeh-Keihan, F. Khalili, N. Khosropour, H.A.M. Aliabadi, F. Radinekiyan, S. Sukhtezari, A. Maleki, H. Madanchi, M.R. Hamblin, M. Mahdavi, Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications. ACS Appl. Mater. Interfaces 13, 33840–33849 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M.S. Bani, Z. Hajizadeh, S. Asgharnasl, A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. R. Eivazzadeh-Keihan, F. Ganjali, H.A.M. Aliabadi, A. Maleki, S. Pouri, M. Mahdavi, A.E. Shalan, S. Lanceros-Méndez, Synthesis and characterization of cellulose, β-cyclodextrin, silk fibroin-based hydrogel containing copper-doped cobalt ferrite nanospheres and exploration of its biocompatibility. J. Nanostruct. Chem. (2022). https://doi.org/10.1007/s40097-022-00481-6

    Article  Google Scholar 

  4. P. Wei, R. Song, C. Chen, Z. Li, Z. Zhu, S. Li, A pH-responsive molecularly imprinted hydrogel for dexamethasone release. J. Inorg. Organomet. Polym. Mater. 29, 659–666 (2019)

    Article  CAS  Google Scholar 

  5. S. Gao, Z. Liu, Q. Yan, P. Wei, Y. Li, J. Ji, L. Li, Facile synthesis of polypyrrole/reduced graphene oxide composite hydrogel for Cr (VI) removal. J. Inorg. Organomet. Polym. Mater. 31, 3677–3685 (2021)

    Article  CAS  Google Scholar 

  6. R. Eivazzadeh-Keihan, F. Ahmadpour, H.A.M. Aliabadi, F. Radinekiyan, A. Maleki, H. Madanchi, M. Mahdavi, A.E. Shalan, S. Lanceros-Méndez, Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. Int. J. Biol. Macromol. 192, 7–15 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. O. Levy-Ontman, D. Blum, R. Golden, E. Pierschel, S. Leviev, A. Wolfson, Palladium-based polysaccharide hydrogels as catalysts in the Suzuki cross-coupling reaction. J. Inorg. Organomet. Polym. Mater. 30, 622–636 (2020)

    Article  CAS  Google Scholar 

  8. R. Eivazzadeh-Keihan, F. Alimirzaloo, H.A. Moghim Aliabadi, E. Bahojb Noruzi, A.R. Akbarzadeh, A. Maleki, H. Madanchi, M. Mahdavi, Functionalized graphene oxide nanosheets with folic acid and silk fibroin as a novel nanobiocomposite for biomedical applications. Sci. Rep. 12, 1–12 (2022)

    Article  Google Scholar 

  9. A.S. Al-Wasidi, Y.G. Abouelreash, S. AlReshaidan, A.M. Naglah, Application of novel modified chitosan hydrogel composite for the efficient removal of eriochrome black T and methylene blue dyes from aqueous media. J. Inorg. Organomet. Polym. Mater. 32, 1142–1158 (2022)

    Article  CAS  Google Scholar 

  10. Z. Naderi, J. Azizian, E. Moniri, N. Farhadyar, Synthesis and characterization of carboxymethyl cellulose/β-cyclodextrin/chitosan hydrogels and investigating the effect of magnetic nanoparticles (Fe3O4) on a novel carrier for a controlled release of methotrexate as drug delivery. J. Inorg. Organomet. Polym. Mater. 30, 1339–1351 (2020)

    Article  CAS  Google Scholar 

  11. G.R. Bardajee, S.S. Hosseini, S. Ghavami, Correction to: Embedded of nanogel into multi-responsive hydrogel nanocomposite for anticancer drug delivery. J. Inorg. Organomet. Polym. Mater. 29, 2291–2291 (2019)

    Article  CAS  Google Scholar 

  12. M. Moghimi, G.H. Motlagh, F. Sorouri, E. Haririan, Cross-linked poly (acrylic acid) hydrogel loaded with zinc oxide nanoparticles and egg White proteins for antimicrobial application. J. Inorg. Organomet. Polym. Mater. 30, 5234–5243 (2020)

    Article  Google Scholar 

  13. R. Eivazzadeh-Keihan, F. Radinekiyan, H. Madanchi, H.A.M. Aliabadi, A. Maleki, Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. R. Eivazzadeh-Keihan, F. Khalili, H.A.M. Aliabadi, A. Maleki, H. Madanchi, E.Z. Ziabari, M.S. Bani, Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: a novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1959–1971 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. M. El-Arnaouty, M. Eid, H. Mansour, In vivo study of silver nanoparticles entrapped poly (N-vinyl pyrrolidone/Dextran) hydrogel synthesized by gamma radiation on the antitumor activity of doxorubicin. J. Inorg. Organomet. Polym. Mater. 31, 2700–2710 (2021)

    Article  CAS  Google Scholar 

  16. Y. Meng, J. Lu, Y. Cheng, Q. Li, H. Wang, Lignin-based hydrogels: a review of preparation, properties, and application. Int. J. Biol. Macromol. 135, 1006–1019 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. R. Eivazzadeh-Keihan, E.B. Noruzi, S.F. Mehrban, H.A.M. Aliabadi, M. Karimi, A. Mohammadi, A. Maleki, M. Mahdavi, B. Larijani, A.E. Shalan, the latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties. J. Mater. Sci. 57, 3855 (2022)

    Article  CAS  Google Scholar 

  18. R. Eivazzadeh-Keihan, S. Asgharnasl, H.A.M. Aliabadi, B. Tahmasebi, F. Radinekiyan, A. Maleki, H. Bahreinizad, M. Mahdavi, M.S. Alavijeh, R. Saber, Magnetic graphene oxide–lignin nanobiocomposite: a novel, eco-friendly and stable nanostructure suitable for hyperthermia in cancer therapy. RSC Adv. 12, 3593–3601 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. N. Ferreira, L. Ferreira, V. Cardoso, F. Boni, A. Souza, M. Gremião, Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur. Polym. J. 99, 117–133 (2018)

    Article  CAS  Google Scholar 

  20. J.-J. Duan, L.-N. Zhang, Robust and smart hydrogels based on natural polymers. Chin. J. Polym. Sci. 35, 1165–1180 (2017)

    Article  CAS  Google Scholar 

  21. F. Topuz, A. Nadernezhad, O.S. Caliskan, Y.Z. Menceloglu, B. Koc, Nanosilicate embedded agarose hydrogels with improved bioactivity. Carbohydr. Polym. 201, 105–112 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. X. Qi, T. Su, X. Tong, W. Xiong, Q. Zeng, Y. Qian, Z. Zhou, X. Wu, Z. Li, L. Shen, Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohydr. Polym. 224, 115208 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. A. Maleki, M. Panahzadeh, R. Eivazzadeh-keihan, Agar: a natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1, 2, 3-triazoles. Green Chem. Lett. Rev. 12(4), 395–406 (2019)

    Article  CAS  Google Scholar 

  24. F. Campos, A.B. Bonhome-Espinosa, G. Vizcaino, I.A. Rodriguez, D. Durand-Herrera, M.T. López-López, I. Sánchez-Montesinos, M. Alaminos, M.C. Sánchez-Quevedo, V. Carriel, Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. Biomed. Mater. 13, 025021 (2018)

    Article  PubMed  Google Scholar 

  25. R. Eivazzadeh-Keihan, K.K. Chenab, R. Taheri-Ledari, J. Mosafer, S.M. Hashemi, A. Mokhtarzadeh, A. Maleki, M.R. Hamblin, Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater. Sci. Eng. C 107, 110267 (2020)

    Article  CAS  Google Scholar 

  26. Z. Zhang, X. Wang, Y. Wang, J. Hao, Rapid-forming and self-healing agarose-based hydrogels for tissue adhesives and potential wound dressings. Biomacromol 19, 980–988 (2018)

    Article  CAS  Google Scholar 

  27. B. Kaczmarek, O. Mazur, O. Miłek, M. Michalska-Sionkowska, A.M. Osyczka, K. Kleszczyński, Development of tannic acid-enriched materials modified by poly (ethylene glycol) for potential applications as wound dressing. Prog. Biomater. 9, 115–123 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Jing, S. Liang, Y. Yan, X. Tian, X. Li, Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. ACS Biomater. Sci. Eng. 5, 4601–4611 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. X. He, X. Liu, J. Yang, H. Du, N. Chai, Z. Sha, M. Geng, X. Zhou, C. He, Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr. Polym. 247, 116689 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. N. Ninan, A. Forget, V.P. Shastri, N.H. Voelcker, A. Blencowe, Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces 8, 28511–28521 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. M. Xu, S. Pradhan, F. Agostinacchio, R.K. Pal, G. Greco, B. Mazzolai, N.M. Pugno, A. Motta, V.K. Yadavalli, Easy, scalable, robust, micropatterned silk fibroin cell substrates. Adv. Mater. Interfaces 6, 1801822 (2019)

    Article  CAS  Google Scholar 

  32. L. Zhang, X. Liu, G. Li, P. Wang, Y. Yang, Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J. Biomed. Mater. Res. A 107, 104–113 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. M.A. Tomeh, R. Hadianamrei, X. Zhao, Silk fibroin as a functional biomaterial for drug and gene delivery. Pharmaceutics 11, 494 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  34. Y. Yan, B. Cheng, K. Chen, W. Cui, J. Qi, X. Li, L. Deng, Enhanced osteogenesis of bone marrow- derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv. Healthc. Mater. 8, 1801043 (2019)

    Article  Google Scholar 

  35. H. Lu, S. Liu, Y. Zhang, Development of novel green synthesized silver nanoparticles with superior antibacterial and wound healing properties in nursing care after rectal surgery. J. Inorg. Organomet. Polym. Mater. 32, 773 (2022)

    Article  CAS  Google Scholar 

  36. P. Song, Y. Tu, X. Shen, A. Yuan, L. Zhai, S.A. Shah, Fabrication of ZIF-8@ sf linear composite through directly feeding approach. J. Inorg. Organomet. Polym. Mater. 29, 2083–2089 (2019)

    Article  CAS  Google Scholar 

  37. P. Wu, Q. Liu, Q. Wang, H. Qian, L. Yu, B. Liu, R. Li, Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. Int. J. Nanomed. 13, 5405 (2018)

    Article  CAS  Google Scholar 

  38. K.K. Chenab, R. Eivazzadeh-Keihan, A. Maleki, P. Pashazadeh-Panahi, M.R. Hamblin, A. Mokhtarzadeh, Biomedical applications of nanoflares: targeted intracellular fluorescence probes. Nanomedicine 17, 342–358 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. R. Eivazzadeh-Keihan, P. Pashazadeh-Panahi, B. Baradaran, A. Maleki, M. Hejazi, A. Mokhtarzadeh, M. de la Guardia, Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends Anal. Chem. 100, 103–115 (2018)

    Article  CAS  Google Scholar 

  40. H. Hong, Y.B. Seo, J.S. Lee, Y.J. Lee, H. Lee, O. Ajiteru, M.T. Sultan, O.J. Lee, S.H. Kim, C.H. Park, Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232, 119679 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. F. Avani, S. Damoogh, F. Mottaghitalab, A. Karkhaneh, M. Farokhi, Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 69, 32 (2019)

    Article  Google Scholar 

  42. R. Eivazzadeh-Keihan, F. Radinekiyan, H.A.M. Aliabadi, S. Sukhtezari, B. Tahmasebi, A. Maleki, H. Madanchi, Chitosan hydrogel/silk fibroin/Mg(OH)2 nanobiocomposite as a novel scaffold with antimicrobial activity and improved mechanical properties. Sci. Rep. 11, 1–13 (2021)

    Article  Google Scholar 

  43. M. Farajzadeh, H. Alamgholiloo, F. Nasibipour, R. Banaei, S. Rostamnia, Anchoring Pd nanoparticles on dithiocarbamate-functionalized SBA-15 for hydrogen generation from formic acid. Sci. Rep. 10, 1–9 (2020)

    Article  Google Scholar 

  44. N. Nouruzi, M. Dinari, N. Mokhtari, M. Farajzadeh, B. Gholipour, S. Rostamnia, Selective catalytic generation of hydrogen over covalent organic polymer supported Pd nanoparticles (COP-Pd). Mol. Catal. 493, 111057 (2020)

    Article  CAS  Google Scholar 

  45. A. Popov, A. Stirke, N. Bakute, B. Brasiunas, A. Ramanavicius, A. Ramanaviciene, Efficiency of granulocyte colony-stimulating factor immobilized on magnetic microparticles on proliferation of NFS-60 cells. Colloids Surf. A Physicochem. Eng. Asp. 578, 123580 (2019)

    Article  CAS  Google Scholar 

  46. J. Baniukevic, I.H. Boyaci, A.G. Bozkurt, U. Tamer, A. Ramanavicius, A. Ramanaviciene, Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 43, 281–288 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. B.L. da Silva, B.L. Caetano, B.G. Chiari-Andréo, R.C.L.R. Pietro, L.A. Chiavacci, Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf. B 177, 440–447 (2019)

    Article  Google Scholar 

  48. A. Mokhtarzadeh, R. Eivazzadeh-Keihan, P. Pashazadeh, M. Hejazi, N. Gharaatifar, M. Hasanzadeh, B. Baradaran, M. de la Guardia, Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal. Chem. 97, 445–457 (2017)

    Article  CAS  Google Scholar 

  49. R. Eivazzadeh-Keihan, P. Pashazadeh, M. Hejazi, M. de la Guardia, A. Mokhtarzadeh, Recent advances in nanomaterial-mediated bio and immune sensors for detection of aflatoxin in food products. Trends Anal. Chem. 87, 112–128 (2017)

    Article  CAS  Google Scholar 

  50. T. Du, S. Chen, J. Zhang, T. Li, P. Li, J. Liu, X. Du, S. Wang, Antibacterial activity of manganese dioxide nanosheets by ros-mediated pathways and destroying membrane integrity. Nanomaterials 10, 1545 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  51. P. Khalili, M. Farahmandjou, Nanofabrication of Zinc Ferrite (ZnFe2O4) composites for biomedical application. Chall. Nano Micro Scale Sci. Technol. 8, 89–98 (2020)

    Google Scholar 

  52. L. Wang, Z. Luo, Q. Zhang, Y. Guan, J. Cai, R. You, X. Li, Effect of degumming methods on the degradation behavior of silk fibroin biomaterials. Fibers Polym. 20, 45–50 (2019)

    Article  CAS  Google Scholar 

  53. S. Rastogi, B. Kandasubramanian, Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. ESPR 27, 210–237 (2020)

    CAS  PubMed  Google Scholar 

  54. Q. Fang, C. Chen, Z. Yang, X.A. Chen, X. Chen, T. Liu, Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres. J. Alloys Compd. 826, 154084 (2020)

    Article  CAS  Google Scholar 

  55. N. Wang, X. Ma, H. Xu, L. Chen, J. Yue, F. Niu, J. Yang, Y. Qian, Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6, 193–199 (2014)

    Article  CAS  Google Scholar 

  56. D. Archana, B.K. Singh, J. Dutta, P. Dutta, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym. 95, 530–539 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. R. Eivazzadeh-Keihan, H.A.M. Aliabadi, F. Radinekiyan, M. Sobhani, A. Maleki, H. Madanchi, M. Mahdavi, A.E. Shalan, Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 11, 17914–17923 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S.K. Jaganathan, M.P. Mani, M. Ayyar, N.P. Krishnasamy, G. Nageswaran, Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. J. Appl. Polym. Sci. 135, 45691 (2018)

    Article  Google Scholar 

  59. E.F. Haney, M.J. Trimble, J.T. Cheng, Q. Vallé, R.E. Hancock, Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8, 29 (2018)

    Article  PubMed Central  Google Scholar 

  60. L. Wang, G. Periyasami, A. Aldalbahi, V. Fogliano, The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chem. 359, 129859 (2021)

    Article  CAS  PubMed  Google Scholar 

  61. S.-W. Ha, A.E. Tonelli, S.M. Hudson, Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromol 6, 1722–1731 (2005)

    Article  CAS  Google Scholar 

  62. N. Senthilkumar, V. Venkatachalam, M. Kandiban, P. Vigneshwaran, R. Jayavel, I.V. Potheher, Studies on electrochemical properties of hetarolite (ZnMn2O4) nanostructure for supercapacitor application. Phys. E Low Dimens. Syst. Nanostruct. 106, 121–126 (2019)

    Article  CAS  Google Scholar 

  63. P. Gupta, M. Kumar, N. Bhardwaj, J.P. Kumar, C. Krishnamurthy, S.K. Nandi, B.B. Mandal, Mimicking form and function of native small diameter vascular conduits using mulberry and non-mulberry patterned silk films. ACS Appl. Mater. Interfaces 8, 15874–15888 (2016)

    Article  CAS  PubMed  Google Scholar 

  64. W. Kiratitanavit, Z. Xia, A. Singh, R. Mosurkal, R. Nagarajan, Tannic acid: a bio-based intumescent char-forming additive for Nylon 6. Combustion 9, 1–5 (2016)

  65. A. Rahmani Del Bakhshayesh, N. Annabi, R. Khalilov, A. Akbarzadeh, M. Samiei, E. Alizadeh, M. Alizadeh-Ghodsi, S. Davaran, A. Montaseri, Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol. 46, 691–705 (2018)

    Article  CAS  PubMed  Google Scholar 

  66. A. Vaitkuviene, V. Ratautaite, L. Mikoliunaite, V. Kaseta, G. Ramanauskaite, G. Biziuleviciene, A. Ramanaviciene, A. Ramanavicius, Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloids Surf. A Physicochem. Eng. Asp. 442, 152–156 (2014)

    Article  CAS  Google Scholar 

  67. A. Vaitkuviene, M. McDonald, F. Vahidpour, J.-P. Noben, K. Sanen, M. Ameloot, V. Ratautaite, V. Kaseta, G. Biziuleviciene, A. Ramanaviciene, Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells. New Biotechnol. 32, 7–12 (2015)

    Article  CAS  Google Scholar 

  68. J.M. Hoffman, K.G. Margolis, Building community in the gut: a role for mucosal serotonin. Nat. Rev. Gastroenterol. Hepatol. 17, 6–8 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. H.Y. Zhou, Y.P. Zhang, W.F. Zhang, X.G. Chen, Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr. Polym. 83, 1643–1651 (2011)

    Article  CAS  Google Scholar 

  70. N. Annabi, D. Rana, E.S. Sani, R. Portillo-Lara, J.L. Gifford, M.M. Fares, S.M. Mithieux, A.S. Weiss, Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 139, 229–243 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. U.T. Khatoon, G.N. Rao, M.K. Mohan, A. Ramanaviciene, A. Ramanavicius, Comparative study of antifungal activity of silver and gold nanoparticles synthesized by facile chemical approach. J. Environ. Chem. Eng. 6, 5837–5844 (2018)

    Article  CAS  Google Scholar 

  72. U.T. Khatoon, G.N. Rao, K.M. Mohan, A. Ramanaviciene, A. Ramanavicius, Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum 146, 259–265 (2017)

    Article  CAS  Google Scholar 

  73. G.G. de Lima, D.W. de Lima, M.J. de Oliveira, A.B. Lugão, M.T. Alcântara, D.M. Devine, M.J. de Sá, Synthesis and in vivo behavior of PVP/CMC/agar hydrogel membranes impregnated with silver nanoparticles for wound healing applications. ACS Appl. Bio Mater. 1, 1842–1852 (2018)

    Article  PubMed  Google Scholar 

  74. T. Ersen Dudu, D. Alpaslan, N. Aktas, Application of poly (agar-co-glycerol-co-sweet almond oil) based organo-hydrogels as a drug delivery material. J. Polym. Environ. 30, 483–493 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Maleki or Mohammad Mahdavi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjali, F., Eivazzadeh-Keihan, R., Aghamirza Moghim Aliabadi, H. et al. Biocompatibility and Antimicrobial Investigation of Agar-Tannic Acid Hydrogel Reinforced with Silk Fibroin and Zinc Manganese Oxide Magnetic Microparticles. J Inorg Organomet Polym 32, 4057–4069 (2022). https://doi.org/10.1007/s10904-022-02410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02410-0

Keywords

Navigation