Skip to main content
Log in

Physico-Chemical Aspects on Uranium and Molybdenum Extraction from Aqueous Solution by Synthesized Phosphinimine Derivative Chelating Agent

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 22 July 2022

This article has been updated

Abstract

To retain uranium and molybdenum ions from G.Gattar leach liquor (GI), North Eastern Desert, Egypt, a new fabricated chelating 3-mercapto-2-trioctyl phosphinimine propionic acid (MTPP), was functionalized. Specifications for MTPP chelating ligand were successfully completed by utilizing a variety of methods. Enhanced experimental factors controlling, namely; pH, shaking time, initial uranium and molybdenum conc., MTPP dosage, A/O phase ratio, temp. and stripping agents, have been achieved. At 25 °C, pH 2 for uranium and 3.5 for molybdenum, 30 min shaking for uranium and 40 for molybdenum and 4.08 × 10–3 mol/L, MTPP/kerosene has a maximum retention power of 135 and 173.5 mg/g for uranium and molybdenum respectively. From the stoichiometric calculations point of view, approximately 1 mol of MTPP can chelate 1 mol of uranium and 3 mol of MTPP can chelate 1 mol of molybdenum. According to kinetic aspects, pseudo-second order kinetic model well interpret the extraction of U6+ and Mo6+ by MTPP giving a retention power of 131.57 mg/g for uranium and 175.43 mg/g for molybdenum. The distribution isotherm (McCabe–Thiele), predicts three theoretical extraction stages necessary to extract nearly all the uranium and molybdenum ions at an A/O ratio of 1/2 for uranium and 1/1.7 for molybdenum ions respectively, while in stripping, four and three theoretical stripping stages are needed. Based on thermodynamic regards, the extraction process by MTPP was predicted as an exothermic with a -ΔH, spontaneous with a -ΔG, and advantageous extraction at low temperatures with a small –ΔS for uranium and molybdenum ions. Uranium and molybdenum ions may be stripped successfully from the loaded MTPP/kerosene by 2 M H2SO4 with 99% efficiency. The enhanced optimized variables were finally put to use to produce uranium and molybdenum concentrate (Na2U2O7, MoO3) with 65.23% uranium content and 87% purity and 60.37% molybdenum content and 90.53% purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. K. Dehnicke, M. Krieger, W. Massa, Coord. Chem. Rev. (1999). https://doi.org/10.1016/S0010-8545(98)00191-x

    Article  Google Scholar 

  2. M.A. Deshmukh, M.D. Shirsat, A. Ramanaviciene, A. Ramanavicius, Crit. Rev. Analyt. Chem. (2018). https://doi.org/10.1080/10408347.2017.1422966

    Article  Google Scholar 

  3. M.A. Deshmukh, H.K. Patil, G.A. Bodkhe, M. Yasuzawa, P. Koinkar, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, Sens. Actuators, B Chem. (2018). https://doi.org/10.1016/j.snb.2017.12.160

    Article  Google Scholar 

  4. M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2017.10.131

    Article  Google Scholar 

  5. R. West, A. Hill, M.J. Fink, Adv. Organomet. Chem. 54, 1–347 (2006). https://doi.org/10.1016/S0065-3055(05)54006-1

    Article  CAS  Google Scholar 

  6. J. García-Álvarez, S.E. García-Garrido, V. Cadierno, J. Organomet. Chem. (2014). https://doi.org/10.1016/j.jorganchem.2013.07.009

    Article  Google Scholar 

  7. H.R. Allcock, Chemistry and applications of polyphosphazenes (Hoboken, NJ, 2003)

    Google Scholar 

  8. M. Gleria, R. De Jaeger, Applicative aspects of poly organophosphazenes (Nova Science Publishers Inc., UK, 2004)

    Google Scholar 

  9. A. Steiner, S. Zacchini, P.I. Richards, Coord. Chem. Rev. (2002). https://doi.org/10.1016/S00108545(02)00012-7

    Article  Google Scholar 

  10. J. García-Álvarez, S.E. García-Garrido, V. Cadierno, J. Organomet. Chem. (2014). https://doi.org/10.1016/j.jorganchem.2013.07.009

    Article  Google Scholar 

  11. Y.G. Gololobov, I.N. Zhmurova, L.F. Kasukhin, Tetrahedron (1981). https://doi.org/10.1016/S0040-4020(01)92417-2

    Article  Google Scholar 

  12. S.S. van Berkel, M.B. van Eldijk, J.C.M. van Hest, Angew. Chem. Int. Ed. (2011). https://doi.org/10.1002/anie.201008102

    Article  Google Scholar 

  13. L.A. Cates, N.M. Ferguson, J. Pharm. Sci. (1964). https://doi.org/10.1002/jps.2600530835

    Article  PubMed  Google Scholar 

  14. A.M. Amin, L. Wang, J. Wang, H. Yu, J. Huo, J. Gao, A. Xiao, Des. Monomers Polym. (2009). https://doi.org/10.1163/138577209X12486896623373

    Article  Google Scholar 

  15. S. Rothemund, I. Teasdale, Chem. Soc. Rev. (2016). https://doi.org/10.1039/C6CS00340K

    Article  PubMed  PubMed Central  Google Scholar 

  16. P. Strasser, I. Teasdale (2020). https://doi.org/10.3390/molecules25071716

    Article  Google Scholar 

  17. G. Xu, Q. Lu, B. Yu, L. Wen, Solid State Ionics (2006). https://doi.org/10.1016/j.ssi.2005.10.029

    Article  Google Scholar 

  18. A. Singh, N.R. Krogman, S. Sethurman, L.S. Nair, J.L. Sturgeon, P.W. Brown, C.T. Laurencin, H.R. Allcock, Biomacromolecules (2006). https://doi.org/10.1021/bm050752r

    Article  PubMed  Google Scholar 

  19. M.A. Keller, C.S. Saba, Anal. Chem. (1996). https://doi.org/10.1021/ac960632x

    Article  PubMed  Google Scholar 

  20. D. Davarcı, S. Beşli, E. Demirbaş, Liq. Cryst. (2013). https://doi.org/10.1080/02678292.2013.773093

    Article  Google Scholar 

  21. K. Brandt, R. Kruszynski, T.J. Bartczak, Inorg. Chim. Acta (2001). https://doi.org/10.1016/S0020-1693(01)00557-6

    Article  Google Scholar 

  22. E. Cil, M.A. Tanyildizi, F. Ozen, M. Boybay, M. Arslan, A.O. Gorgulu, Arch. Pharm. Chem. Life Sci. (2012). https://doi.org/10.1002/ardp.201100412

    Article  Google Scholar 

  23. J. Sun, Z. Yu, X. Wang, D. Wu, ACS Sustain. Chem. Eng. (2014). https://doi.org/10.1021/sc400283d

    Article  Google Scholar 

  24. H.R. Allcock, S. Kwon, Macromolecules (1986). https://doi.org/10.1021/ma00160a002

    Article  Google Scholar 

  25. Y.E. Greish, J.D. Bender, S. Lakshmi, P.W. Brown, H.R. Allcock, C.T. Laurencin, Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2004.02.016

    Article  PubMed  Google Scholar 

  26. P. Bortolus, M. Gleria, J. Inorg. Organomet. Polym. (1994). https://doi.org/10.1007/BF00684025

    Article  Google Scholar 

  27. J.P. Critchley, G.J. Knight, W.W. Wright, Heat-resistant polymers (Springer, 1983)

    Book  Google Scholar 

  28. Ph. Potin, R. De Jaeger, Eur. Polym. J. (1991). https://doi.org/10.1016/0014-3057(91)90185-Q

    Article  Google Scholar 

  29. B.M. Atia, M.A. Gado, M.F. Cheira, Euro-Mediterranean J. Environ. Integr. (2018). https://doi.org/10.1007/s41207-018-0080-y

    Article  Google Scholar 

  30. K.-H. Park, H.-I. Kim, P.K. Parhi, Sep. Purif. Technol. (2010). https://doi.org/10.1016/j.seppur.2010.06.018

    Article  Google Scholar 

  31. T.A. Lasheen, M.E. Ibrahim, H.B. Hassib, A.S. Helal, Hydrometallurgy (2014). https://doi.org/10.1016/j.hydromet.2014.03.011

    Article  Google Scholar 

  32. T.A. Lasheen, M.E. El-Ahmady, H.B. Hassib, A.S. Helal, Front. Chem. Sci. Eng. (2013). https://doi.org/10.1007/s11705-013-1317-6

    Article  Google Scholar 

  33. M. Wang, X. Wang, W. Liu, Hydrometallurgy (2009). https://doi.org/10.1016/j.hydromet.2008.12.004

    Article  Google Scholar 

  34. J.W. An, Y.H. Lee, S.J. Kim, T. Tran, S.O. Lee, M.J. Kim, Part 1: Lab. Stud. Miner. Eng. 22, 1020–1025 (2009). https://doi.org/10.1016/j.mineng.2008.08.011

    Article  CAS  Google Scholar 

  35. J.W. An, B.H. Jung, Y.H. Lee, T. Tran, S.J. Kim, M.J. Kim, Part 2: Pilot Plant Oper. Miner. Eng. (2009). https://doi.org/10.1016/j.mineng.2008.08.010

    Article  Google Scholar 

  36. P.K. Parhi, K.-H. Park, H.-I. Kim, J.-T. Park, Hydrometallurgy (2011). https://doi.org/10.1016/j.hydromet.2010.09.004

    Article  Google Scholar 

  37. D.M. Imam, Y.A. El-Nadi, Hydrometallurgy (2018). https://doi.org/10.1016/j.hydromet.2018.07.022

    Article  Google Scholar 

  38. Z. Zhao, L. Yang, G. Huo, X. Chen, H. Huang, J. Refract. Met. Hard Mater. (2011). https://doi.org/10.1016/j.ijrmhm.2010.10.011

    Article  Google Scholar 

  39. N.I. Gerhardt, A.A. Palant, V.A. Petrova, R.K. Tagirov, Hydrometallurgy (2001). https://doi.org/10.1016/S0304-386X0000123-7

    Article  Google Scholar 

  40. X. Wu, G. Zhang, L. Zeng, Q. Zhou, Z. Li, D. Zhang, Z. Cao, W. Guan, Q. Li, L. Xiao, Hydrometallurgy (2019). https://doi.org/10.1016/j.hydromet.2019.04.006

    Article  Google Scholar 

  41. R.K. Biswas, M. Wakihara, M. Taniguchi, Hydrometallurgy (1985). https://doi.org/10.1016/0304-386X(85)90034-9

    Article  Google Scholar 

  42. A.R.C. Yacouba, S.L. Ibrahim, I. Natatou’s, Turkish J. Chem. (2019). https://doi.org/10.3906/kim-1803-51

    Article  Google Scholar 

  43. L. Zeng, T. Yang, X. Yi, P. Chen, J. Liu, G. Huo, Hydrometallurgy (2020). https://doi.org/10.1016/j.hydromet.2020.105500

    Article  Google Scholar 

  44. C. Xiao, L. Zeng, L. Xiao, G. Zhang, Solvent Extr. Ion Exch. (2017). https://doi.org/10.1080/07366299.2017.1308154

    Article  Google Scholar 

  45. T.H. Nguyen, M.S. Lee, Hydrometallurgy (2015). https://doi.org/10.1016/j.hydromet.2015.04.014

    Article  Google Scholar 

  46. H.T. Truong, T.H. Nguyen, M.S. Lee, Hydrometallurgy (2017). https://doi.org/10.1016/j.hydromet.2017.06.006

    Article  Google Scholar 

  47. K.C. Sole, P.M. Cole, A.M. Feather, M.H. Kotze, Solvent Extr. Ion Exch. (2011). https://doi.org/10.1080/07366299.2011.581101

    Article  Google Scholar 

  48. S. Mondal, D.K. Singh, M. Anitha, J.N. Sharma, R.C. Hubli, H. Singh, Hydrometallurgy (2014). https://doi.org/10.1016/j.hydromet.2014.04.023

    Article  Google Scholar 

  49. J.E. Quinn, D. Wilkins, K.H. Soldenhoff, Hydrometallurg (2013). https://doi.org/10.1016/j.hydromet.2013.01.014

    Article  Google Scholar 

  50. D. Beltrami, A. Chagnes, M. Haddad, H. Laureano, H. Mokhtari, B. Courtaud, S. Jugé, G. Cote, Hydrometallurgy (2014). https://doi.org/10.1016/j.hydromet.2014.02.010

    Article  Google Scholar 

  51. Z. Zhu, Y. Pranolo, C.Y. Cheng, Miner. Eng. (2016). https://doi.org/10.1016/j.mineng.2016.01.016

    Article  Google Scholar 

  52. H. Hassaballa, J.W. Steed, P.C. Junk, M.R.J. Elsegood, Inorg. Chem. (1998). https://doi.org/10.1021/ic9802597

    Article  PubMed  Google Scholar 

  53. L. Salmon, P. Thuéry, M. Ephritikhine, Chem. Commun. (2006). https://doi.org/10.1039/B516438A

    Article  Google Scholar 

  54. H. Sopo, K. Goljahanpoor, R. Sillanpää, Polyhedron (2007). https://doi.org/10.1016/j.poly.2007.03.032

    Article  Google Scholar 

  55. J.C.B.S. Amaral, C.A. Morias, Miner. Eng. (2010). https://doi.org/10.1016/j.mineng.2010.01.003

    Article  Google Scholar 

  56. Y.A. El-Nadi, J.A. Daoud, H.F. Aly, Int. J. Miner. Process (2005). https://doi.org/10.1016/j.minpro.2004.12.005

    Article  Google Scholar 

  57. B.M. Atia, Y.M. Khawassek, G.M. Hussein, M.A. Gado, M.A. El-Sheify, M.F. Cheira, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105726

    Article  Google Scholar 

  58. B.M. Atia, M.A. Gado, M.F. Cheira, H.S. El-Gendy, M.A. Yousef, M.D. Hashem, Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.1924161

    Article  Google Scholar 

  59. Z. Marczenko, M. Balcerzak, Separation, preconcentration and spectrophotometry in inorganic analysis (Elsevier Science B.V, Amesterdam, Netherland, 2000), pp. 1–526

    Google Scholar 

  60. K.J. Mathew, B. Mason, M.E. Morales, U.I. Narayann, Radioanalyt. Nucl. Chem. (2009). https://doi.org/10.1007/s10967-009-0186-4

    Article  Google Scholar 

  61. B.M. Atia, M.A. Gado, M.O.A. El-Magied, E.A. Elshehy, Sep. Sci. Technol. (2020). https://doi.org/10.1080/01496395.2019.1650769

    Article  Google Scholar 

  62. Z. You, N. Zhang, Q. Guan, Y. Xing, F. Bai, L. Sun, J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-019-01420-9

    Article  Google Scholar 

  63. M. Nazir, I.I. Naqvi, J. Saudi Chem. Soc. (2010). https://doi.org/10.1016/j.jscs.2009.12.016

    Article  Google Scholar 

  64. M.W. Rosenzweig, A. Scheurer, C.A. Lamsfus, F.W. Heinemann, L. Maron, J. Andrez, M. Mazzanti, K. Meyer, Chem. Sci. (2016). https://doi.org/10.1039/c6sc00677a

    Article  PubMed  PubMed Central  Google Scholar 

  65. K.C. Lalithambika, K. Shanmugapriya, S. Sriram, Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3120-9

    Article  Google Scholar 

  66. C.C.L. Pereira, M.C. Michelini, J. Marcalo, Y. Gong, J.K. Gibson, Inorg. Chem. (2013). https://doi.org/10.1021/ic4020493

    Article  PubMed  Google Scholar 

  67. T.H. Nguyen, M.S. Lee, Ind. Eng. Chem. Res. (2014). https://doi.org/10.1021/ie500486y

    Article  Google Scholar 

  68. I.H. Zidan, M.F. Cheira, A.R. Bakry, B.M. Atia, Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1748613

    Article  Google Scholar 

  69. M.F. Cheira, B.M. Atia, M.N. Kouraim, J. Radiat. Res. Appl. Sci. (2017). https://doi.org/10.1016/j.jrras.2017.07.005

    Article  Google Scholar 

  70. L. Zeng, C.Y. Cheng, Hydrometallurgy (2009). https://doi.org/10.1016/j.hydromet.(2009).03.012

    Article  Google Scholar 

  71. M.A. Gado, B.M. Atia, M.F. Cheira, M.E. Elawady, M. Demerdash, Radiochim. Acta (2021). https://doi.org/10.1515/ract-2021-1063

    Article  Google Scholar 

  72. M. Khalil, H.A. Madbouly, E.M.A. Elgoud, I.M. Ali, J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-021-02200-0

    Article  Google Scholar 

  73. E.A. Abdelrahman, A. Subaihi, J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-019-01380-0

    Article  Google Scholar 

  74. M.A. Hassanin, H.S. El-Gendy, M.F. Cheira, B.M. Atia, Int. J. Environ. Analyt. Chem. (2021). https://doi.org/10.1080/03067319.2019.1667984

    Article  Google Scholar 

  75. A.S. Abdelmoaty, S.T. El-Wakeel, N. Fathy, A.A. Hanna, J. Inorg. Organometal. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02326-9

    Article  Google Scholar 

  76. G.I. Dzhardimalieva, I.E. Uflyand, J. Inorg. Organomet. Polym Mater. (2018). https://doi.org/10.1007/s10904-018-0841-8

    Article  Google Scholar 

  77. B.M. Atia, A.K. Sakr, M.A. Gado, H.S. El-Gendy, N.M. Abdelazeem, E.M. El-Sheikh, M.Y. Hanfi, M.I. Sayyed, J.S. Al-Otaibi, M.F. Cheira, Polymers (2022). https://doi.org/10.3390/polym14091687

    Article  PubMed  PubMed Central  Google Scholar 

  78. N.G. Chernorukov, O.V. Nipruk, E.L. Kostrova, Radiochemistry (2016). https://doi.org/10.1134/S106636221602003X

    Article  Google Scholar 

  79. M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sens. Actuat. B 145, 13–19 (2010). https://doi.org/10.1016/j.snb.2009.11.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for supporting this work through research groups program under grant number R.G.P. 2/124/43.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahig M. Atia.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake. In the Acknowledgements section number 2 is missing in grant number of the project. It should read as R.G.P. 2/124/43. The original article has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahium, H.A., Awwad, N.S., Gado, M.A. et al. Physico-Chemical Aspects on Uranium and Molybdenum Extraction from Aqueous Solution by Synthesized Phosphinimine Derivative Chelating Agent. J Inorg Organomet Polym 32, 3640–3657 (2022). https://doi.org/10.1007/s10904-022-02374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02374-1

Keywords

Navigation