Skip to main content

Advertisement

Log in

Flexible Conductive Nanocomposites for Electrochemical Devices Based on Chlorinated Natural Rubber/Nickel Oxide Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A study on structural, thermal, temperature-dependent electrical properties such as AC conductivity and dielectric properties of flexible conductive chlorinated natural rubber (Cl-NR) were carried out with various contents of nickel oxide (NiO) nanoparticles. The role of fillers on DC conductivity of the composites was correlated with different theoretical models. The FT-IR spectra showed the characteristic absorption band for nano-NiO in the rubber indicating the effective incorporation of nanoparticles in Cl-NR. Optical bandgap energy was observed minimum for 5 phr loaded composite. TGA results showed that the thermal stability increased with NiO content in the polymer matrix. The dielectric properties and AC electrical conductivity increased significantly with the temperatures and also with the addition of nanoparticles up to 5 phr loading. The activation energy of the electrical conductivity decreases with an increase in temperature for all the systems. The higher value of dielectric permittivity explained the electrode polarisations at the low-frequency region. The skewed semi-circular arc in the Cole–Cole plot observed for all the samples explained the semiconducting behaviour of the nanocomposites. Space charge polarisation and relaxation dynamics of Cl-NR composites were explained based on modulus spectra. The McCullough model was found to be the most promising one to explain the DC conductivity of the system which emphasizes the importance of interfacial interaction at the boundary of filler and the rubber chain for the network formation. According to the results of this study, these samples can be used in highly durable flexible electronic devices such as conductive sensors, actuators and super-capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C. Putson, D. Jaaoh, N. Meauma, N. Muensit, Effect of micro-and nano-particle fillers at low percolation threshold on the dielectric and mechanical properties of polyurethane/copper composites. J. Inorg. Organomet. Polym. Mater. 22, 1300–1307 (2012). https://doi.org/10.1007/s10904-012-9755-z

    Article  CAS  Google Scholar 

  2. A. Nihmath, M.T. Ramesan, Fabrication, characterization and dielectric studies of NBR/hydroxyapatite nanocomposites. J. Inorg. Organomet. Polym. Mater. 27, 481–489 (2017). https://doi.org/10.1007/s10904-016-0490-8

    Article  CAS  Google Scholar 

  3. Y. Feng, Q. Deng, J. Hu, C. Peng, Q. Wu, Z. Xu, Highly retained electric and mechanical traits in micron-sized glass fibers filled epoxy composite based on heat-oxygen ageing. J. Inorg. Organomet. Polym. Mater. 29, 66–71 (2019). https://doi.org/10.1007/s10904-018-0965-x

    Article  CAS  Google Scholar 

  4. H. Zhang, Y. Zhou, M. Dai, Z. Zhang, A novel flying robot system driven by dielectric elastomer balloon actuators. J. Intell. Mater. Syst. Struct. 29, 2522–2527 (2018). https://doi.org/10.1177/1045389X18770879

    Article  Google Scholar 

  5. W. Wei, M. Zhu, S. Wu, X. Shen, S. Li, Stimuli-responsive biopolymers: an inspiration for synthetic smart materials and their applications in self-controlled catalysis. J. Inorg. Organomet. Polym. Mater. 30, 69–87 (2019). https://doi.org/10.1007/s10904-019-01382-y

    Article  CAS  Google Scholar 

  6. P. Linnebach, F. Simone, G. Rizzello, S. Seelecke, Development, manufacturing, and validation of a dielectric elastomer membrane actuator-driven contactor. J. Intell. Mater. Syst. Struct. 30, 636–648 (2018). https://doi.org/10.1177/1045389X18818778

    Article  Google Scholar 

  7. D. Peng, Q. Liu, T. Lu, Research on electrostrictive strain performance of stacked dielectric elastomer actuators. J. Mater. Sci. Mater. Electron. 31, 2162–2166 (2020). https://doi.org/10.1007/s10854-019-02741-8

    Article  CAS  Google Scholar 

  8. S. Ho, H. Banerjee, Y.Y. Foo, H. Godaba, W.M. Aye, J. Zhu, C.H. Yap, Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. J. Intell. Mater. Syst. Struct. 28, 3054–3065 (2017). https://doi.org/10.1177/1045389X17704921

    Article  CAS  Google Scholar 

  9. S.Q. Wu, J.W. Wang, G.Q. Wang, H. Ren, Enhanced dielectric properties of all-organic acrylic resin elastomer-based composite with doped polyaniline. Polym. Bull. 75, 2901–2916 (2018). https://doi.org/10.1007/s00289-017-2194-9

    Article  CAS  Google Scholar 

  10. A.O. Halloran, F.O. Malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008). https://doi.org/10.1063/1.2981642

    Article  CAS  Google Scholar 

  11. F.A. Ghazali, C.K. Mah, A. AbuZaiter, P.S. Chee, M.S. Ali, Soft dielectric elastomer actuator micropump. Sens. Actuators A. Phys. 263, 276–284 (2017). https://doi.org/10.1016/j.sna.2017.06.018

    Article  CAS  Google Scholar 

  12. T.M.M. Mabrouk, E.E. Khozemy, A.E.H. Ali, Investigating the electrical and thermal characteristics of bismuth/(polyvinyl alcohol/acrylic acid) nanocomposites membranes prepared by ionizing radiation. J. Inorg. Organomet. Polym. Mater. 27, 399–405 (2017). https://doi.org/10.1007/s10904-016-0476-6

    Article  CAS  Google Scholar 

  13. X. Xu, Z. Xu, P. Chen, X. Zhou, A. Zheng, Y. Guan, Preparation of fluorosilicone random copolymers with properties superior to those of fluorosilicone/silicone polymer blends. J. Inorg. Organomet. Polym. Mater. 25, 1267–1276 (2015). https://doi.org/10.1007/s10904-015-0236-z

    Article  CAS  Google Scholar 

  14. E.M.A. Jamal, P.A. Joy, P. Kurian, M.R. Anantharaman, Synthesis of nickel–rubber nanocomposites and evaluation of their dielectric properties. Mater. Sci. Eng: B. 156, 24–31 (2009). https://doi.org/10.1016/j.mseb.2008.10.041

    Article  CAS  Google Scholar 

  15. Y. Liu, Y. Wei, R. Liu, Z. Liang, J. Yang, R. Zhang, Z. Zhou, Y. Nie, Preparation of epoxidized natural rubbers with improved aging resistance by covalently bridging graphene and antioxidants. J. Inorg. Organomet. Polym. Mater. 30, 1553–1565 (2020). https://doi.org/10.1007/s10904-019-01300-2

    Article  CAS  Google Scholar 

  16. M.J. Azizli, M. Mokhtary, H.A. Khonakdar, V. Goodarzi, Hybrid rubber nanocomposites based on XNBR/EPDM: select the best dispersion type from different nanofillers in the presence of a compatibilizer. J. Inorg. Organomet. Polym. Mater. 30, 2533–2550 (2020). https://doi.org/10.1007/s10904-020-01502-z

    Article  CAS  Google Scholar 

  17. Y.Y. Luo, Y.Q. Wang, J.P. Zhong, C.Z. He, Y.Z. Li, Z. Peng, Interaction between fumed-silica and epoxidized natural rubber. J. Inorg. Organomet. Polym. Mater. 21, 777–783 (2011). https://doi.org/10.1007/s10904-011-9539-x

    Article  CAS  Google Scholar 

  18. Y. Liu, Q. Zhou, Q. Lu, C. Han, Z. Zhou, Z. Liang, R. Liu, Y. Nie, Reinforcement and toughening of rubber by bridging graphene and nanosilica. J. Inorg. Organomet. Polym. Mater. 30, 337–348 (2020). https://doi.org/10.1007/s10904-019-01192-2

    Article  CAS  Google Scholar 

  19. L. Jiang, A. Betts, D. Kennedy, S. Jerrams, The fabrication of dielectric elastomers from silicone rubber and barium titanate: employing equi-biaxial pre-stretch to achieve large deformations. J. Mater. Sci. 50, 7930–7938 (2015). https://doi.org/10.1007/s10853-015-9357-6

    Article  CAS  Google Scholar 

  20. S.S. El-Khiyami, A.M. Ismail, R.S. Hafez, Characterization, optical and conductivity study of nickel oxide based nanocomposites of polystyrene. J. Inorg. Organomet. Polym. Mater. 31, 4313–4325 (2021). https://doi.org/10.1007/s10904-021-02041-x

    Article  CAS  Google Scholar 

  21. M.S. Zoromba, N.A. El-Ghamaz, S. Alghool, Effect of doping with nickel ions on the electrical properties of poly (aniline-co-o-anthranilic acid) and doped copolymer as precursor of NiO nanoparticles. J. Inorg. Organomet. Polym. Mater. 25, 955–963 (2015). https://doi.org/10.1007/s10904-015-0199-0

    Article  CAS  Google Scholar 

  22. C. Bora, A. Kalita, D. Das, S.K. Dolui, P.K. Mukhopadhyay, Preparation of polyaniline/nickel oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their electrical, electrochemical and magnetic properties. Polym. Int. 63, 445–452 (2014). https://doi.org/10.1002/pi.4522

    Article  CAS  Google Scholar 

  23. M. Gong, L. Zhang, P. Wan, Polymer nanocomposite meshes for flexible electronic devices. Prog. Polym. Sci. 107, 101279 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101279

    Article  CAS  Google Scholar 

  24. M. Nankali, N.M. Nouri, N.G. Malek, M.A.S. Shahrezaei, Electrical properties of stretchable and skin–mountable PDMS/MWCNT hybrid composite films for flexible strain sensors. J. Compos. Mater. 53, 3047–3060 (2019). https://doi.org/10.1177/0021998319853034

    Article  Google Scholar 

  25. K.I. Elizabeth, R. Alex, B. Kuriakose, S. Varghese, N.R. Peethambaran, Dichlorocarbene modification of natural rubber and its role as a modifier in blends of natural rubber and hydrogenated nitrile rubber. J. Appl. Polym. Sci. 101, 4401–4409 (2006). https://doi.org/10.1002/app.23184

    Article  CAS  Google Scholar 

  26. J.J. Edayadiyil, J. Abraham, S. Rajeevan, S.C. George, Synthesis and characterization of natural rubber/graphene quantum dot nanocomposites. J. Polym. Res. 28, 358 (2021). https://doi.org/10.1007/s10965-021-02713-9

    Article  CAS  Google Scholar 

  27. P. Suphasorn, I. Appamato, V. Harnchana, P. Thongbai, C. Chanthad, C. Siriwong, V. Amornkitbamrung, Ag nanoparticle-incorporated natural rubber for mechanical energy harvesting application. Molecules 26, 2720 (2021). https://doi.org/10.3390/molecules26092720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. S. Radabutra, S. Thanawan, T. Amornsakchai, Chlorination and characterization of natural rubber and its adhesion to nitrile rubber. Eur. Polym. J. 45, 2017–2022 (2009). https://doi.org/10.1016/j.eurpolymj.2009.04.008

    Article  CAS  Google Scholar 

  29. M.T. Ramesan, V. Nidhisha, P. Jayakrishnan, Facile synthesis, characterization and material properties of novel poly (vinyl cinnamate)/nickel oxide nanocomposites. Polym. Int. 66, 548–556 (2017). https://doi.org/10.1002/pi.5288

    Article  CAS  Google Scholar 

  30. H. Yu, S. Li, J. Zhong, K. Xu, Studies of thermooxidative degradation process of chlorinated natural rubber from latex. Thermochim. Acta 410, 119–124 (2004). https://doi.org/10.1016/S0040-6031(03)00402-7

    Article  CAS  Google Scholar 

  31. Ö.B. Mergen, Effect of MWCNT addition on the optical bandgap of PVA/CS transient biocomposites. J. Compos. Mater. 55, 4347–4359 (2021). https://doi.org/10.1177/00219983211037050

    Article  CAS  Google Scholar 

  32. R. Sreeja, S. Najidha, S.R. Jayan, P. Predeep, M. Mazur, P.D. Sharma, Electro-optic materials from co-polymeric elastomer–acrylonitrile butadiene rubber (NBR). Polymer 47, 617–623 (2006). https://doi.org/10.1016/j.polymer.2005.09.024

    Article  CAS  Google Scholar 

  33. A.M.A. Kader, The optical bandgap and surface free energy of polyethylene modified by electron beam irradiations. J. Nucl. Mater. 435, 231–235 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.287

    Article  CAS  Google Scholar 

  34. P. Predeep, R. Sreeja, M. Mazur, P.D. Sharma, Role of starch as a steric stabilizer for doping natural rubber: effect on optical, electrical, mechanical, and morphological properties. J. Elastom. Plast. 38, 333–348 (2006). https://doi.org/10.1177/0095244306064949

    Article  CAS  Google Scholar 

  35. J.P. Zhong, S.D. Li, Y.C. Wei, Z. Peng, H.P. Yu, Study on preparation of chlorinated natural rubber from latex and its thermal stability. J. Appl. Polym. Sci. 73, 2863–2867 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14%3c2863::AID-APP9%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  36. J.P. Zhong, S.D. Li, H.P. Yu, Y.C. Wei, Z. Peng, J.L. Qu, C.K. Guo, Thermooxidative decomposition and its kinetics on chlorinated natural rubber from latex. J. Appl. Polym. Sci. 81, 1305–1309 (2001). https://doi.org/10.1002/app.1554

    Article  CAS  Google Scholar 

  37. R.S. Chen, D. Shahdan, S. Ahmad, Tensile and thermal behaviours of poly(lactic acid)/liquid natural rubber blend matrix incorporated nickel zinc ferrite nanoparticles. Malaysian J. Anal. Sci. 21, 1417–1422 (2017). https://doi.org/10.17576/mjas-2017-2106-24

    Article  Google Scholar 

  38. A. Mallikarjuna, S. Ramesh, N.S. Kumar, K.C. Naidu, K.V. Ratnam, H. Manjunatha, Photocatalytic activity, negative AC-electrical conductivity, dielectric modulus, and impedance properties in 0.6 (Al0.2La0.8TiO3) + 0.4 (BiFeO3) nanocomposite. Cryst. Res. Technol. 55, 2000068 (2020). https://doi.org/10.1002/crat.202000068

    Article  CAS  Google Scholar 

  39. M. Hashim, S. Kumar, S.E. Shirsath, E.M. Mohammed, H. Chung, R. Kumar, Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite. Physica B 407, 4097–4103 (2012). https://doi.org/10.1016/j.physb.2012.06.006

    Article  CAS  Google Scholar 

  40. K. Suhailath, M.T. Ramesan, Effect of nano-Ce-doped TiO2 on AC conductivity and DC conductivity modeling studies of poly (n-butyl methacrylate). J. Electron. Mater. 47, 6484–6493 (2018). https://doi.org/10.1007/s11664-018-6556-3

    Article  CAS  Google Scholar 

  41. R.D. Gould, T.S. Shafai, Conduction in lead phthalocyanine films with aluminium electrodes. Thin Solid Films 373, 89–93 (2000). https://doi.org/10.1016/S0040-6090(00)01097-X

    Article  CAS  Google Scholar 

  42. B. Ma, Y. Wang, K. Wang, X. Li, J. Liu, L. An, Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride. Acta Mater. 89, 215–224 (2015). https://doi.org/10.1016/j.actamat.2015.02.020

    Article  CAS  Google Scholar 

  43. K. Suhailath, M.T. Ramesan, Theoretical and experimental studies on DC conductivity and temperature-dependent AC conductivity of poly (butyl methacrylate)/Nd-TiO2 nanocomposites. J. Thermoplast. Compos. Mater. 33, 1061–1077 (2019). https://doi.org/10.1177/0892705718817350

    Article  CAS  Google Scholar 

  44. M.J. Jiang, Z.M. Dang, M. Bozlar, F. Miomandre, J. Bai, Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites. J. Appl. Phys. 106, 084902 (2009). https://doi.org/10.1063/1.3238306

    Article  CAS  Google Scholar 

  45. R. Manna, S.K. Srivastava, Fabrication of functionalized graphene filled carboxylated nitrile rubber nanocomposites as flexible dielectric materials. Mater. Chem. Front. 1, 780–788 (2017). https://doi.org/10.1039/C6QM00025H

    Article  CAS  Google Scholar 

  46. Z. Samir, Y. El Merabet, M.P. Graça, S. Soreto Teixeira, M.E. Achour, L.C. Costa, Dielectric behaviour of carbon nanotubes particles-filled polyester polymer composites. J. Compos. Mater. 51, 1831–1837 (2016). https://doi.org/10.1177/0021998316665682

    Article  CAS  Google Scholar 

  47. M.L. Verma, H.D. Sahu, Ionic conductivity and dielectric behavior of PEO-based silver ion conducting nanocomposite polymer electrolytes. Ionics 21, 3223–3231 (2015). https://doi.org/10.1007/s11581-015-1517-9

    Article  CAS  Google Scholar 

  48. T.T. Dang, S.P. Mahapatra, V. Sridhar, J.K. Kim, K.J. Kim, H. Kwak, Dielectric properties of nanotube reinforced butyl elastomer composites. J. Appl. Polym. Sci. 113, 1690–1700 (2009). https://doi.org/10.1002/app.30166

    Article  CAS  Google Scholar 

  49. E. Şentürk, Dielectric characteristics of Ce3+ doped Sr0.61Ba0.39Nb2O6 with Cole-Cole plots technique. Cryst. Res. Technol. J. Exp. Indus. Crystallogr. 39, 157–160 (2004)

    Article  CAS  Google Scholar 

  50. M.W. Sifuna, M.R. Baidillah, A. Sapkota, M. Takei, A cole-cole dielectric relaxation analysis of albumin and γ-globulins for protein quantification by electrical impedance spectroscopy. Electroanalysis 32, 1121–1129 (2020). https://doi.org/10.1002/elan.201900576

    Article  CAS  Google Scholar 

  51. M. Khatun, E. Kabir, Dielectric, impedance, modulus spectroscopy and AC conductivity studies on novel organic ferroelectric diisopropylammonium chloride (dipaCl). J. Adv. Dielect. 11, 2150015 (2021). https://doi.org/10.1142/S2010135X21500156

    Article  CAS  Google Scholar 

  52. Z.M. Elimat, AC-impedance and dielectric properties of hybrid polymer composites. J. Compos. Mater. 49, 3–15 (2013). https://doi.org/10.1177/0021998313514256

    Article  CAS  Google Scholar 

  53. M.M. Genescà, J.G. Amorós, R.M. Rosas, L. Massagués, X. Colom, Study and characterization of the dielectric behavior of low linear density polyethylene composites mixed with ground tire rubber particles. Polymers 12, 1075 (2020). https://doi.org/10.3390/polym12051075

    Article  CAS  Google Scholar 

  54. S.P. Mahapatra, D.K. Tripathy, Y. Lee, Electrical response of microcellular EPDM rubber composites: complex dielectric modulus formalism and current–voltage characteristics. Polym. Bull. 68, 1965–1976 (2012). https://doi.org/10.1007/s00289-011-0699-1

    Article  CAS  Google Scholar 

  55. R.M. Scarisbrick, Electrically conducting mixtures. J. Phys D. Appl. Phys. 6, 2098 (1973). https://doi.org/10.1088/0022-3727/6/17/316

    Article  CAS  Google Scholar 

  56. R. Ram, M. Rahaman, D. Khastgir, Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity. Compos. Part A. Appl. Sci. Manuf. 69, 30–39 (2015). https://doi.org/10.1016/j.compositesa.2014.11.003

    Article  CAS  Google Scholar 

  57. F. Bueche, Electrical resistivity of conducting particles in an insulating matrix. J. Appl. Phys. 43, 4837–4838 (1972). https://doi.org/10.1063/1.1661034

    Article  CAS  Google Scholar 

  58. R.L. McCullough, Generalized combining rules for predicting transport properties of composite materials. Compos. Sci. Technol. 16, 336 (1985). https://doi.org/10.1016/0266-3538(85)90087-9

    Article  Google Scholar 

  59. N.J. Sohi, S. Bhadra, D. Khastgir, The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49, 1349–1361 (2011). https://doi.org/10.1016/j.carbon.2010.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (M. T. Ramesan) greatly acknowledges the financial assistance from Kerala State Council for Science, Technology and Environment, Government of Kerala, India (Order No. 566/2017/KSCSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvathi, K., Bahuleyan, B.K. & Ramesan, M.T. Flexible Conductive Nanocomposites for Electrochemical Devices Based on Chlorinated Natural Rubber/Nickel Oxide Nanoparticles. J Inorg Organomet Polym 32, 2827–2842 (2022). https://doi.org/10.1007/s10904-022-02307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02307-y

Keywords

Navigation