Skip to main content
Log in

Fabrication of Mesoporous PdO–TiO2 Nanocomposites with Superior Photonic Efficacy Concerning Photo-Destruction of the Herbicide Imazapyr

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this probe, a convenient template was practiced to fabricate mesoporous PdO–TiO2 nanocomposites using a sol–gel routine. Photo-destruction of the herbicide imazapyr was adapted to figure out the photonic efficacies of the formulated nanocomposites. Furthermore, the appraised photonic efficacies were correlated with the photonic efficacies retained by commercial P25 Degussa as well as mesoporous titania. Progression of the tetragonal anatase phase of titania was entrenched via X-ray diffraction inquire. PdO–TiO2 nanocomposite accommodating 0.9% PdO possessed superlative photonic efficacy of 34.8% whereas, commercial P25 Degussa and mesoporous titania possessed photonic efficacies of 1.0 and 2.0% respectively revealing the superior photonic efficacy of the fabricated nanocomposites in comparison to other relevant photo-catalysts. In conclusion, PdO–titania nanocomposites acquiring enhanced charge carriers’ separation could be fabricated along with the collaborating action of both titania and PdO nanoparticles. Furthermore, the tremendous stability of the fabricated nanocomposites was ascertained via its implementation up to five cycles keeping its photo-catalytic performance without alteration. Hence, PdO nanoparticles could be formulated as fruitful promoters for the photo-catalytic aspects possessed by mesoporous titania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Robben, A.A. Ismail, S.J. Lohmeier, A. Feldhoff, D.W. Bahnemann, J.-C. Buhl, Facile synthesis of highly ordered mesoporous and well crystalline TiO2: impact of different gas atmosphere and calcinations temperature on structural properties. Chem. Mater. 24, 1268–1275 (2012)

    Article  CAS  Google Scholar 

  2. A.A. Ismail, Mesoporous PdO-TiO2 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B Environ. 117–118, 67–72 (2012)

    Article  Google Scholar 

  3. V.B. Shevale, A.G. Dhodamani, S.D. Delekar, Catalytic reclamation of silver present in photographic waste using magnetically separable TiO2@ CuFe2O4 nanocomposites and thereof its use in antibacterial activity. ACS Omega 5(2), 1098–1108 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Zhang, J. Xu, J. Hu, C. Cui, H. Liu, Interfacial growth of TiO2-rGO composite by pickering emulsion for photocatalytic degradation. Langmuir 33(20), 5015–5024 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. A.A. Ismail, I.A. Ibrahim, Impact of supercritical drying and heat treatment on physical properties of titania/silica aerogel monolithic and its applications. Appl. Catal. A General 346, 200–205 (2008)

    Article  CAS  Google Scholar 

  6. S. Takeuchi, T. Katayama, T. Sugiyama, M. Matsuda, M. Kitamura, T. Wada, Y.S. Yanagida, Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells. Chem. Mater. 15, 2824–2828 (2003)

    Article  Google Scholar 

  7. A.K. Sinha, K. Suzuki, Preparation and characterization of novel mesoporous Ceria-titania. J. Phys. Chem. B 109, 1708–1714 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. J.H. Schattka, D. Shchukin, G. Jia, J.M. Antonietti, R.A. Caruso, Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique. Chem. Mater. 14, 5103–5108 (2002)

    Article  CAS  Google Scholar 

  9. R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45, 5231–5238 (2006)

    Article  CAS  Google Scholar 

  10. D. Jing, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem. Phys. Lett. 415, 74–78 (2005)

    Article  CAS  Google Scholar 

  11. H. Wang, Z. Wu, Y. Liu, Y. Wang, Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere 74, 773–778 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Ishibai, J. Sato, S. Akita, T. Nishikawa, S. Miyagishi, Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation. J. Photochem. Photobiol. A Chem. 188, 106–111 (2007)

    Article  CAS  Google Scholar 

  13. Y. Yang, O. Sugino, T. Ohno, Band gap of β-PtO2 from first-principlesBand gap of β-PtO2 from first-principles. AIP Adv. 2(022172), 1–8 (2012)

    Google Scholar 

  14. L.A. Pretzer, P.J. Carlson, J.E. Boyd, The effect of Pt oxidation state and concentration on the photocatalytic removal of aqueous ammonia with Pt modified titania. J. Photochem. Photobiol. A Chem. 200, 246–253 (2008)

    Article  CAS  Google Scholar 

  15. R.M. Wersal, J.D. Madsen, Comparison of imazapyr and imazamox for control of parrotfeather (Myriophyllum aquaticum (Vell.) Verdc.). J. Aquat. Plant Manage. 45, 132–136 (2007)

    Google Scholar 

  16. F. Chouli, I. Radja, E. Morallon, A. Benyoucef, A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym. Compos. 38, E254–E260 (2017)

    Article  CAS  Google Scholar 

  17. F.L. Souza, T.Q. Teodoro, V.M. Vasconcelos, F.L. Migliorini, P.C.F. Lima Gomes, N.G. Ferreira, M.R. Baldan, R.L.A. Haiduke, M.R.V. Lanza, Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate. Chemosphere 117, 596–603 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. A. Meng, L. Zhang, B. Cheng, J. Yu, Dual cocatalysts in TiO2photocatalysis. Adv. Mater. 31, e1807660 (2019)

    Article  PubMed  Google Scholar 

  19. D.A. Panayotov, A.I. Frenkel, J.R. Morris, Catalysis and photocatalysis by nanoscale Au/TiO2: perspectives for renewable energy. ACS Energy Lett. 2, 1223–1231 (2017)

    Article  CAS  Google Scholar 

  20. M.F. Atitar, A.A. Ismail, D. Bahneman, D. Afanasev, A.V. Emeline, Mesoporous TiO2 nanocrystals as efficient photocatalysts: impact of calcination temperatures and phase transformations on photocatalytic performances. Chem. Eng. J. 264, 417–424 (2015)

    Article  Google Scholar 

  21. A.A. Ismail, I. Abdelfattah, L. Robben, H. Bouzid, S.A. Al-Sayari, D.W. Bahnemann, Photocatalytic degradation of Imazapyr using mesoporous Al2O3-TiO2 nanocomposites. Sep. Purif. Technol. 145, 147–153 (2015)

    Article  CAS  Google Scholar 

  22. A.A. Ismail, I. Abdelfattah, A. Helal, S.A. Al-Sayari, L. Robben, D.W. Bahnemann, Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance under visible light and UV illumination. J. Hazard. Mater. 307, 43–54 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. A.A. Ismail, D.W. Bahnemann, L. Robben, M. Wark, Palladium doped porous titaniaphotocatalysts: impact of mesoporous order and crystallinity. Chem. Mater. 22, 108–116 (2010)

    Article  CAS  Google Scholar 

  24. A.A. Ismail, D.W. Bahnemann, One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced its photocatalytic activity for methanol oxidation. Green Chem. 13, 428–435 (2011)

    Article  CAS  Google Scholar 

  25. A.A. Ismail, D.W. Bahnemann, Highly active crystalline mesoporous TiO2 films coated on polycarbonate substrate for self-cleaning applications. J. Phys. Chem. C 115, 5784–5791 (2011)

    Article  CAS  Google Scholar 

  26. A.A. Ismail, I. Abdelfattah, M. Faisal, A. Helal, Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites. J. Hazard. Mater. 342, 519–526 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. K. Wenderich, G. MulMethods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116, 14587–14619 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. H. Khojasteh, M. Salavati-Niasari, A. Abbasi, F. Azizi, M. EnhessariSynthesis, characterization and photocatalytic activity of PdO/TiO2 and Pd/TiO2 nanocomposites. J. Mater. Sci. Mater. Electron. 27, 1261–1269 (2016)

    Article  CAS  Google Scholar 

  29. C.-J. Huang, F.-M. Pan, I.-C. Chang, Enhanced photocatalytic decomposition of methylene blue by the heterostructure of PdO nanoflakes and TiO2 nanoparticles. Appl. Surf. Sci. 263, 345–351 (2012)

    Article  CAS  Google Scholar 

  30. F. Cardenas-Lizana, S. Gomez-Quero, H. Idriss, M.A. Keane, Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2. J. Catal. 268, 223–234 (2009)

    Article  CAS  Google Scholar 

  31. M.Z. Ghori, S. Veziroglu, B. Henkel, A. Vahl, O. Polonskyi, T. Strunskus, F. Faupel, O.C. Aktas, A comparative study of photocatalysis on highly active columnar TiO2 nanostructures in-air and in-solution. Sol. Energy Mater. Sol. Cells 178, 170–178 (2018)

    Article  CAS  Google Scholar 

  32. L. Kumaresan, A. Prabhu, M. Palanichamy, E. Arumugam, V. Murugesan, Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: evaluation of their photocatalytic activity. J. Hazard. Mater. 186, 1183–1192 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. M. Faisal, S.B. Khan, M.M. Rahman, A.A. Ismail, A.M. Asiri, S.A. Al-Sayari, Development of efficient chemi-sensor and photocatalyst based on wet-chemically prepared ZnO nanorods for environmental remediation. J. Taiwan Institute of Chem. Eng. 45, 2733–2741 (2014)

    Article  CAS  Google Scholar 

  34. A.A. Ismail, D.W. Bahnemann, I. Bannat, M. Wark, Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J. Phys. Chem. C 113, 7429–7435 (2009)

    Article  CAS  Google Scholar 

  35. O. Lupan, V. Postica, M. Hoppe, N. Wolff, O. Polonskyi, T. Pauporté, B. Viana, O. Majérus, L. Kienle, F. Faupel, R. Adelung, PdO/PdO2 functionalized ZnO: Pd films for lower operating temperature H2 gas sensing. Nanoscale 10, 14107–14127 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl. Surf. Sci. 253, 7497–7500 (2007)

    Article  CAS  Google Scholar 

  37. J. Zhong, J. Li, J. Zeng, X. He, S. Huang, W. Jiang, M. Li, Enhanced photocatalytic activity of In2O3-decorated TiO2. Appl Phys A 115, 1231–1238 (2014)

    Article  CAS  Google Scholar 

  38. J. Uddin, J.E. Peralta, G.E. Scuseria, Density functional theory study of bulk platinum monoxide. Phys. Rev. B 71, 155112 (2005)

    Article  Google Scholar 

  39. W. Kim, T. Tachikawa, H. Kim, Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: synergistic effects of co-dopants. Appl. Catal. B Environ. 147, 642–650 (2014)

    Article  CAS  Google Scholar 

  40. G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 44, 83–87 (1997)

    Article  CAS  Google Scholar 

  41. B.K. Vijayan, N.M. Dimitrijevic, J. Wu, K.A. Gray, The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J. Phys. Chem. C 114, 21262–21269 (2010)

    Article  CAS  Google Scholar 

  42. C. Huang, I. Wang, Y. Lin, Y. Tseng, C. Lu, Visible light photocatalytic degradation of nitric oxides on PtOx-modified TiO2 via sol–gel and impregnation method. J. Mol. Catal. A Chem. 316, 163–170 (2010)

    Article  CAS  Google Scholar 

  43. S. Kim, S.J. Hwang, W.Y. Choi, Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B 109, 24260–24267 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. T. Aarthi, G. Madras, Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind. Eng. Chem. Res. 46, 7–14 (2007)

    Article  CAS  Google Scholar 

  45. K. Rajeshwar, M. Osugi, W. Chanmanee, C. Chenthamarakshan, M. Zanoni, P. Kajitvichyanukul, A.R. Krishnan, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Photochem. Photobiol. C 9, 171–192 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Taif Researchers Supporting Project (TURSP-2020/42), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Mohamed.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, R.M., Zaki, Z.I. Fabrication of Mesoporous PdO–TiO2 Nanocomposites with Superior Photonic Efficacy Concerning Photo-Destruction of the Herbicide Imazapyr. J Inorg Organomet Polym 31, 2891–2901 (2021). https://doi.org/10.1007/s10904-020-01875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01875-1

Keywords

Navigation