Skip to main content
Log in

Polymer Precursors Effect in the Macromolecular Metal-Polymer on the Rh/RhO2/Rh2O3 Phase Using Solvent-Less Synthesis and Its Photocatalytic Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A mixture of a nanostructured Rh/RhO2 phase was easily obtained by thermally treating the macromolecular Chitosan·(RhCl3)x precursor, while the Rh/Rh2O3 phase was obtained by pyrolyzing PSP-4-PVP·(RhCl3)x, precursors. The nature of the polymeric precursor acting as a solid-state template does not significantly influence the “foam-like” morphology of the Rh/RhO2 and Rh/Rh2O3 nanoparticles. The size of the obtained products is within the range of 16 nm, as confirmed by HRTEM. A possible formation of the Rh/RhO2 and Rh/Rh2O3 nanoparticles is proposed. The bandgap values estimated from Tauc plots are 3.7 eV, and 3.0 eV for Rh/RhO2 and Rh2O3, respectively. Their photocatalytic activity was measured, for the first time, using a methylene blue pollutant, achieving a photodegradation of 78% for Rh/RhO2 and 70% for Rh/Rh2O3 in 300 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Chapter 22 and 30 (Wiley, New York, 1980)

    Google Scholar 

  2. R. Jin, The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol. Rev. 1, 31–56 (2012)

    Article  CAS  Google Scholar 

  3. M. Fernandez-Garcia, A. Martinez-Arias, J. Hanson, C. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. J. A. Chem. Rev. 104, 4063–4104 (2004)

    Article  CAS  Google Scholar 

  4. Y.L. Kim, Y. Ha, N.S. Lee, J.G. Kim, J.M. Baik, C. Le, K. Yoon, Y. Lee, M.H. Kim, Hybrid architecture of rhodium oxide nanofibers and ruthenium oxide nanowires for electrocatalysts. J. Alloys Compd. 663, 574–580 (2016)

    Article  CAS  Google Scholar 

  5. J. Bai, S.-E. Han, R. Peng, J.-H. Zheng, J.-X. Jiang, Y. Chen, Ultrathin rhodium oxide nanosheet nanoassemblies: synthesis, morphological stability, and electrocatalytic application. ACS Appl. Mater Interfaces 9, 17195–17200 (2017)

    Article  CAS  Google Scholar 

  6. K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, Simultaneously photodeposited rhodium metal and oxide nanoparticles promoting photocatalytic hydrogen production. Chem. Commun. 47, 8958–8960 (2011)

    Article  CAS  Google Scholar 

  7. A. Saric, S. Popovic, S. Music, Formation of crystalline phases by thermal treatment of amorphous rhodium hydrous oxide. Mater. Lett. 55, 145–151 (2002)

    Article  CAS  Google Scholar 

  8. A. Saric, S. Popovic, R. Trojko, S. Music, The thermal behavior of amorphous rhodium hydrous oxide. J. Alloys. Compd. 320, 140–148 (2001)

    Article  CAS  Google Scholar 

  9. L.S. Kibis, A.I. Stadnichenko, S.V. Koscheev, V. Zaikovskii, A.I. Boronin, XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J. Phys. Chem. C 120, 19142–19150 (2016)

    Article  CAS  Google Scholar 

  10. C. Díaz, M.L. Valenzuela, M.A. Laguna-Bercero, A. Orera, D. Bobadilla, S. Abarca, O. Peña, Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors. RSC Adv. 7, 27729–27736 (2017)

    Article  Google Scholar 

  11. C. Díaz, M.L. Valenzuela, K. Mendoza, O. Peña, C. O´Dwyer, Nanostructured copper oxides and phosphates from a new solid-state route. Inorg. Chim. Acta 377, 5–13 (2011)

    Article  Google Scholar 

  12. C. Diaz, O. Crespo, C. O´Dwyer, C. Gimeno, A. Laguna, I. Ospino, M.L. Valenzuela, Luminescent gold and silver complexes with the monophosphane 1-(PPh2)-2-Me-C2B10H10 and their conversion to gold micro-and superstructured materials. Inorg. Chem. 54, 7260–7269 (2014)

    Google Scholar 

  13. B. Teo, X. Sun, Silicon-based low-dimensional nanomaterial and nanodevices. Chem. Rev. 107, 1454–1532 (2007)

    Article  CAS  Google Scholar 

  14. G.B. Khomutov, V.V. Kislov, M.N. Antipirina, R.V. Gainutdinov, S.P. Gubin, A.Y. Obydenov, S.A. Pavlov, A.A. Rakhnyanskaya, A.N. Sergeev-Cherenkov, E.S. Soldatov, D.B. Suyatin, A.L. Toltikhina, A.S. Trifonov, T.V. Yurova, Interfacial nanofabrication strategies in development of new functional nanomaterials and planar supramolecular nanostructures for nanoelectronics and nanotechnology. Microelectron. Eng. 69, 373–383 (2003)

    Article  CAS  Google Scholar 

  15. M.P. Pileni, Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties. Acc. Chem. Res. 40, 685–693 (2007)

    Article  CAS  Google Scholar 

  16. M.P. Pileni, 2D superlattices and 3D supracrystals of metal nanocrystals: a new scientific adventure. J. Mater. Chem. 21, 16748–16758 (2001)

    Article  Google Scholar 

  17. Y.F. Wan, N. Goubet, P.A. Albouy, M.P. Pileni, Hierarchy in Au nanocrystal ordering in supracrystals: a potential approach to detect new physical properties. Langmuir 29, 7456–7463 (2013)

    Article  CAS  Google Scholar 

  18. C. Díaz, M.L. Valenzuela, Metallic nanostructures using oligo and polyphosphazenes as template or stabilizer in solid state, in Encyclopedia of Nanoscience and Nanotechnology, vol. 16, ed. by H.S. Nalwa (American Scientific Publishers, Valencia, 2010), pp. 239–256

    Google Scholar 

  19. F.P. Koffyberg, Optical bandgaps and electron affinities of semiconducting Rh2O3 (I) and Rh2O3 (II). J. Phys. Chem. Solids 53, 1285–1288 (1992)

    Article  CAS  Google Scholar 

  20. Y. Abe, K. Kato, M. Kawamura, K. Sasaki, Rhodium and rhodium oxide thin films characterized by XPS. Surf. Sci. Spectra 8, 117 (2001)

    Article  CAS  Google Scholar 

  21. T.M. Silva, A.M.P. Simoes, M.G.S. Ferreira, M. Walls, M. Da Cunha, BeloElectronic structure of iridium oxide films formed in neutral phosphate buffer solutions. J. Electroanal. Chem. 441, 5–12 (1998)

    Article  CAS  Google Scholar 

  22. Y.D. Sherson, S.J. Aboud, J. Wilcoc, B.J. Cantwell, J. Phys. Chem 115, 11036–11044 (2001)

    Article  Google Scholar 

  23. C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. 7, 2831–2867 (2014)

    Article  CAS  Google Scholar 

  24. C. Díaz, M.L. Valenzuela, V. Lavayen, C. O´Dwyer, Layered graphitic carbon host formation during liquid-free solid state growth of metal pyrophosphates. Inorg. Chem. 51, 6228–6236 (2012)

    Article  Google Scholar 

  25. P. Allende, M. Laguna, L. Barrientos, M.L. Valenzuela, C. Diaz, Solid state tuning morphology, crystal phase and size through metal macromolecular complexes and its significance in the photocatalytic response. ACS Appl. Energy Mater. 1, 3159–3170 (2018)

    Article  Google Scholar 

  26. C. Diaz, M.L. Valenzuela, O. Cifuentes-Vaca, M. Segovia, M.A. Laguna-Bercero, Incorporation of nanostructured ReO3 in silica matrix and their activity toward photodegradation of blue methylene. J. Inorg. Organomet. Polym. Mater. 30, 1726–1734 (2020)

    Article  CAS  Google Scholar 

  27. C. Diaz, M.L. Valenzuela, O. Cifuentes-Vaca, M. Segovia, M.A. Laguna-Bercero, Iridium nanostructured metal oxide, its inclusion in silica matrix and their activity toward photodegradation of methylene blue. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123276

    Article  Google Scholar 

  28. C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M.L. Valenzuela, P. Allende, H. Geaney, C. O’Dwyer, Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles for using macromolecular polymeric precursors. New J. Chem. 40, 6768–6776 (2016)

    Article  CAS  Google Scholar 

  29. C. Díaz, M.L. Valenzuela, C. Garcia, R. de la Campa, A.-P. Soto, Solid-state synthesis of pure and doped lanthanides oxide nanomaterials by using polymer templates. Study of their luminescent properties. Mater. Lett. 209, 111–114 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fondecyt Project 1160241 for financial support. This research also received funding from Consejo Superior de Investigaciones Científicas, Spain, under Grant I-COOP LIGHT 2015CD0013. The use of Servicio General de Apoyo a las Investigación (SAI, University of Zaragoza) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Diaz or M. L. Valenzuela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, C., Valenzuela, M.L., Cifuentes-Vaca, O. et al. Polymer Precursors Effect in the Macromolecular Metal-Polymer on the Rh/RhO2/Rh2O3 Phase Using Solvent-Less Synthesis and Its Photocatalytic Activity. J Inorg Organomet Polym 30, 4702–4708 (2020). https://doi.org/10.1007/s10904-020-01634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01634-2

Navigation