Skip to main content
Log in

Application of Novel Fe3O4–Polyaniline Nanocomposites in Asphaltene Adsorptive Removal: Equilibrium, Kinetic Study and DFT Calculations

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Recent investigations have shown that surface modification can improve the colloidal stability and chemical properties of the metallic nanoparticles. In this study, poly aniline (PANI) coated Fe3O4 nanoparticles were synthesized and used for asphaltene adsorption. The prepared nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating-sample magnetometer techniques. The effects of adsorbent amount, initial asphaltene concentration and heptane to toluene volume ratio on the sorbents adsorptive capability were studied. The experimental sorption isotherm data was fitted to the Langmuir isotherm model for coated and uncoated adsorbents. The kinetic data was consistent with Pseudo second order kinetic model. Asphaltene adsorption on Fe3O4/PANI composite was much higher than pure Fe3O4 due to the significant π–π interactions between asphaltene and adsorbent and stability effect of PANI. The results indicated that PANI coated Fe3O4 is an appropriate candidate for crude oil upgrading. Moreover, density functional theory calculations confirm that the adsorption energy of asphaltene over the Fe3O4/PANI composite is larger than that over the bare Fe3O4. This can be mainly attributed to the more favorable orbital interactions as well as charge-transfer effects between asphaltene and PANI in the former system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.Ph. Pfeiffer, R.N.J. Saal, Asphaltic bitumen as colloid system. J. Phys. Chem. 44(2), 139–149 (1940)

    Article  Google Scholar 

  2. B. Schuler, G. Meyer, D. Peña, O.C. Mullins, L. Gross, Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 31, 137 (2015)

    Google Scholar 

  3. B.B. Maini, H.K. Sarmaand, A.E. George, Significance of foamy-oil behavior in primary production of heavy oils. J. Can. Pet. Technol. 32, 50 (1993)

    Article  CAS  Google Scholar 

  4. Z. Hoseini Dastgerdi, S.S. Meshkat, An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution. J. Pet. Sci. Eng 174, 1053 (2019)

    Article  Google Scholar 

  5. P. Ekholm, E. Blomberg, P. Claesson, I.H. Auflem, J. Sjoblom, A.J. Kornfeldt, A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. Colloid Interface Sci. 247, 32 (2002)

    Article  Google Scholar 

  6. W.A. Abdallah, S.D. Taylor, Surface characterization of adsorbed asphaltene on a stainless steel surface. Nucl. Instrum. Methods Phys. Res. B 258, 11 (2007)

    Article  Google Scholar 

  7. T. Pernyeszi, I. Dekany, Sorption and elution of asphaltenes from porous silica surfaces. Colloids Surf. A 194, 25 (2001)

    Article  CAS  Google Scholar 

  8. T. Pernyeszi, A. Patzko, O. Berkesi, I. Dekany, Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids Surf. A 137, 373 (1998)

    Article  CAS  Google Scholar 

  9. A. Saada, B. Siffert, E.J. Papirer, Comparison of the hydrophilicity/hydrophobicity of illites and kaolinites. Colloid Interface Sci. 174, 185 (1998)

    Article  Google Scholar 

  10. H. Gaboriau, A. Saada, Influence of heavy organic pollutants of anthropic origin on PAH retention by kaolinite. Chemosphere 44, 1633 (2001)

    Article  CAS  Google Scholar 

  11. M. Szymula, A.W. Marczewski, Adsorption of asphaltenes from toluene on typical soils of Lublin region. Appl. Surf. Sci. 196, 301 (2001)

    Article  Google Scholar 

  12. N.N. Nassar, Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy Fuels 24, 16 (2010)

    Google Scholar 

  13. M. Madhi, A. Bemani, A. Daryasafar, M.R. Khosravi, Experimental and modeling studies of the effects of different nanoparticles on asphaltene adsorption. Pet. Sci. Technol. 35, 242–248 (2017)

    Article  Google Scholar 

  14. N. Hosseinpour, A. Khodadadi, A. Bahramian, Y. Mortazavi, Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir 29, 2 (2013)

    Article  Google Scholar 

  15. J. Castillo, V. Vargas, V. Piscitelli, L. Ordoñez, H. Rojas, Study of asphaltene adsorption onto raw surfaces and iron nanoparticles by AFM force spectroscopy. J. Pet. Sci. Eng. 151, 248 (2017)

    Article  CAS  Google Scholar 

  16. N.N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, P. Pereira-Almao, Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel 95, 257 (2012)

    Article  CAS  Google Scholar 

  17. B. Mirzayi, N. NaghdiShayan, Adsorption kinetics and catalytic oxidation of asphalteneon synthesized maghemite nanoparticles. J. Pet. Sci. Eng. 121, 13 (2014)

    Article  Google Scholar 

  18. S.I. Hashemi, B. Fazelabdolabadi, S. Moradi, A.M. Rashidi, A. Shahrabadi, H. Bagherzadeh, On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix. Appl. Nanosci. 6, 71 (2016)

    Article  CAS  Google Scholar 

  19. C.A. Franco, N.N. Nassar, M.A. Ruiz, P.R. Pereira-Almao, F.B. Cortés, Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy Fuels 27, 6 (2013)

    Google Scholar 

  20. N.N. Nassar, A. Hassan, P. Pereira-Almao, Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energy Fuels (2011). https://doi.org/10.1021/ef101230g

    Article  Google Scholar 

  21. B.J. Abu Tarboush, M.M. Husein, Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. J. Colloid Interface Sci. 378, 64 (2012)

    Article  CAS  Google Scholar 

  22. S.M. Hashmi, A. Firoozabadi, Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation. J. Phys. Chem. B 114, 48 (2010)

    Article  Google Scholar 

  23. R. Setoodeh, N.P. Darvishi, F. Esmaeilzadeh, Adsorption of asphaltene from crude oil by applying polythiophene coating on Fe3O4 nanoparticles. J. Dispers. Sci. Technol. 39, 5 (2018)

    Google Scholar 

  24. X. Liua, L. Zhang, Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technol. 277, 112 (2015)

    Article  Google Scholar 

  25. X. Wang, Y. Liu, S. Tao, B. Xing, Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon 48, 3721 (2010)

    Article  CAS  Google Scholar 

  26. S.S. Umarea, B.H. Shambharkara, R.S. Ningthoujamb, Synthesis and characterization of polyaniline–Fe3O4 nanocomposite: electrical conductivity, magnetic, electrochemical studies. Synth. Met. 160, 18 (2010)

    Google Scholar 

  27. A.H. Abdalsalam, A.A. Ati, A. Abduljabbar, T.A. Hussein, Structural, optical, electrical and magnetic studies of PANI/ferrite nanocomposites synthesized by PLD technique. J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-018-0997-2

    Article  Google Scholar 

  28. U. Kurtan, Y. Junejo, B. Unal, A. Baykal, The electrical properties of polyaniline (PANI)–Co0.5Mn0.5Fe2O4 nanocomposite. J. Inorg. Organomet. Polym. 23, 1089 (2013)

    Article  CAS  Google Scholar 

  29. H. Kavas, M. Gunay, A. Baykal, M.S. Toprak, H. Sozeri, B. Aktas, Negative permittivity of polyaniline–Fe3O4 nanocomposite. J. Inorg. Organomet. Polym. 23, 306 (2013)

    Article  CAS  Google Scholar 

  30. M.K. Mohammadi Nodeh, S. Soltani, S. Shahabuddin, H. Rashidi Nodeh, H. Sereshti, Equilibrium, kinetic and thermodynamic study of magnetic polyaniline/graphene oxide based nanocomposites for ciprofloxacin removal from water. J. Inorg. Organomet. Polym. Mater. 28, 1226 (2018)

    Article  CAS  Google Scholar 

  31. R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Appl. Surf. Sci. 256, 44 (2010)

    Article  Google Scholar 

  32. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990)

    Article  CAS  Google Scholar 

  33. B. Delley, From molecules to solids with the DMol3DMol3 approach. J. Chem. Phys. 113, 7756 (2000)

    Article  CAS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  35. B. Delley, Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66, 155125 (2002)

    Article  Google Scholar 

  36. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463 (2004)

    Article  CAS  Google Scholar 

  37. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006)

    Article  CAS  Google Scholar 

  38. J.G. Speight, S.E. Moschopedis, On the molecular nature of petroleum asphaltenes. Adv. Chem. Ser. 195, 1 (1981)

    CAS  Google Scholar 

  39. F. Camilo, P. Edgar, B. Pedro, M.A. Ruiz, F.B. Cortés, Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 105, 8 (2013)

    Google Scholar 

Download references

Acknowledgements

This research project has been carried out with financial support of the Iran National Science Foundation (INSF). (Content No. 90008029.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Salar Meshkat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastgerdi, Z.H., Meshkat, S.S., Hosseinzadeh, S. et al. Application of Novel Fe3O4–Polyaniline Nanocomposites in Asphaltene Adsorptive Removal: Equilibrium, Kinetic Study and DFT Calculations. J Inorg Organomet Polym 29, 1160–1170 (2019). https://doi.org/10.1007/s10904-019-01079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01079-2

Keywords

Navigation