Skip to main content
Log in

Synthesis, Characterization and SOD-Like Activity of Histidine Immobilized Silica Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Mn(II)-containing silica nanoparticles (Mn-NPs) has been successfully synthesized and characterized using various techniques. The produced Mn-NPs are spherical-like with the average size of 427 nm. FTIR results confirmed that Mn(II) ions in Mn-NPs were coordinated with histidine groups on the surface of silica nanoparticles via the red shift of the absorption peak of N–H stretching vibration. The relative organic content calculated from TGA data involved was 17.6 %. The superoxide dismutase (SOD) activity of the Mn-NPs was evaluated using an improved nitrotetrazolium blue chloride (NBT) method. And it exhibited an optimal activity with IC50 = 0.012 g L−1. To match the function of SOD in organisms, a new conception, in site reusability, was proposed to evaluate the reusability. The recycling experiments reveal that Mn-NPs can maintain high SOD activity in site after eleven cyclic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.F. Song, L.Q. Sheng, X.B. Zhang, Appl. Microbiol. Biotechnol. 96, 123 (2012)

    Article  CAS  Google Scholar 

  2. I. Pálinkó, Inorg. Biochem. 10, 281 (2008)

    Google Scholar 

  3. I. Fridovich, Photochem. Photobiol. 28, 733 (1978)

    Article  CAS  Google Scholar 

  4. V. Pelmenschikov, P.E.M. Siegbahn, Inorg. Chem. 44, 3311 (2005)

    Article  CAS  Google Scholar 

  5. A.F. Miller, Acc. Chem. Res. 41, 501 (2008)

    Article  CAS  Google Scholar 

  6. V. Pelmenschikov, P.E.M. Siegbahn, J. Am. Chem. Soc. 128, 7466 (2006)

    Article  CAS  Google Scholar 

  7. D.P. Baromdeau, C.J. Kassmann, C.K. Bruns, J.A. Tainer, E.D. Getzoff, Biochemistry 43, 8038 (2004)

    Article  Google Scholar 

  8. X.N. Hu, J.B. Liu, S. Hou, T. Wen, W.Q. Liu, K. Zhang, W.W. He, Y.L. Ji, H.X. Ren, Q. Wang, X.C. Wang, Sci. China 54, 1749 (2011)

    Google Scholar 

  9. Q.X. Lu, X.C. Li, Y. Wang, G.J. Chen, J. Mol. Model. 15, 1397 (2009)

    Article  CAS  Google Scholar 

  10. S.I. Liochev, Chem. Res. Toxicol. 26, 1312 (2013)

    Article  CAS  Google Scholar 

  11. D.L. Zhang, D.H. Busch, P.L. Lennon, R.H. Weiss, W.L. Neumann, D.P. Riley, Inorg. Chem. 37, 956 (1998)

    Article  CAS  Google Scholar 

  12. Y.H. Zhou, H. Fu, W.X. Zhao, W.L. Chen, C.Y. Su, H.Z. Sun, L.N. Ji, Z.W. Mao, Inorg. Chem. 46, 734 (2007)

    Article  CAS  Google Scholar 

  13. D.P. Riley, Chem. Rev. 99, 2573 (1999)

    Article  CAS  Google Scholar 

  14. S. Miriyala, I. Spasojevic, A. Tovmasyan, D. Salvemini, Z. Vujaskovic, D. St. Clair, I. Batinic-Haberle, Biochim. Biophys. Acta 1822, 79 (2012)

    Google Scholar 

  15. I. Batinic-Haberle, J.S. Reboucas, I. Spasojevic, Antioxid. Redox Sign. 13, 877 (2010)

    Article  CAS  Google Scholar 

  16. W. Yang, H. Zheng, W.T. Yuan, J.G. Xu, Anal. Sci. 20, 1265 (2004)

    Article  CAS  Google Scholar 

  17. X.L. Chen, T.T. Zhao, J.L. Zou, Microchim. Acta 164, 93 (2009)

    Article  CAS  Google Scholar 

  18. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Article  Google Scholar 

  19. U.P. Singh, R.K. Singh, I. Yashuhiro, S. Yoshitsugu, Int. J. Pept. Res. Ther. 12, 379 (2006)

    Article  CAS  Google Scholar 

  20. B. Rukmini, B. D’Souza, V. D’Souza, Ind. J. Clin. Biochem. 19, 114 (2004)

    Article  CAS  Google Scholar 

  21. C. Beauchamp, I. Fridovich, Anal. Biochem. 44, 276 (1971)

    Article  CAS  Google Scholar 

  22. G.L. Li, L.Q. Xu, X.Z. Tang, K.G. Neoh, E.T. Kang, Macromolecules 43, 5797 (2010)

    Article  CAS  Google Scholar 

  23. Z.M. Xing, C.L. Wang, J. Yan, L. Zhang, L. Li, L.S. Zha, Colloid Polym. Sci. 288, 1723 (2010)

    Article  CAS  Google Scholar 

  24. W. Wolodkiewicz, J. Therm. Anal. Calorim. 68, 141 (2002)

    Article  CAS  Google Scholar 

  25. Y. Sun, L.W. Oberley, Y. Li, Clin. Chem. 34, 497 (1998)

    Google Scholar 

  26. W. Li, H.F. Wang, Q.L. Wang, X.S. Tan, Metallomics 6, 1540 (2014)

    Article  CAS  Google Scholar 

  27. Y.W. Sheng, I.A. Abreu, D.E. Cabelli, M.J. Maroney, M. Teiseira, A.F. Miller, J.S. Valentine, Chem. Rev. 114, 3854 (2014)

    Article  CAS  Google Scholar 

  28. Y.W. Sheng, T.A. Stich, K. Barnese, E.B. Gralla, D. Cascio, R.D. Britt, D.E. Cabelli, J.S. Valentine, J. Am. Chem. Soc. 133, 20878 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Natural Science Foundation of China (21171135), China Hubei Provincial Science Technology Department (2011BFA020) and the National Center of Phosphor Resources Development and Utilization Engineering and Technology, China (No. k004, 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Jiang, W., Pan, Z. et al. Synthesis, Characterization and SOD-Like Activity of Histidine Immobilized Silica Nanoparticles. J Inorg Organomet Polym 25, 1289–1297 (2015). https://doi.org/10.1007/s10904-015-0239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0239-9

Keywords

Navigation