Skip to main content
Log in

A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In many engineering optimization problems, objective function evaluations can be extremely computationally expensive. The effective global optimization (EGO) is a widely used approach for expensive optimization. Balance between global exploration and local exploitation is a very important issue in designing EGO-like algorithms. This paper proposes a multiobjective optimization based EGO (EGO-MO) for addressing this issue. In EGO-MO, a global surrogate model for the objective function is firstly constructed using some initial database of designs. Then, a multiobjective optimization problem (MOP) is formulated, in which two objectives measure the global exploration and local exploitation. At each generation, the multiobjective evolutionary algorithm based on decomposition is used for solving the MOP. Several solutions selected from the obtained Pareto front are evaluated. In such a way, it can generate multiple test solutions simultaneously to take the advantage of parallel computing and reduce the computational time. Numerical experiments on a suite of test problems have shown that EGO-MO outperforms EGO in terms of iteration numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling problems. Paper presented at the IEEE Congress on Evolutionary Computation, CEC 2008 (2008)

  2. Feng, Z., Zhang, Q., Tang, Q., Yang, T., Ge, J.: Control-structure integrated multiobjective design for flexible spacecraft using MOEA/D. Struct. Multidiscip. Optim. (2014). doi:10.1007/s00158-014-1053-7

  3. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  4. Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Han, Z.-H., Görtz, S.: Hierarchical Kriging model for variable-fidelity surrogate modeling. AIAA J. 50(9), 1885–1896 (2012)

    Article  Google Scholar 

  6. Jeong, S., Suzuki, K., Obayashi, S., Kurita, M.: Optimization of nonlinear lateral characteristic of lifting-body type reentry vehicle. J. Aerosp. Comput. Inf. Commun. 6(3), 239–255 (2009)

    Article  Google Scholar 

  7. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)

    Article  MATH  Google Scholar 

  8. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Keane, A.J.: Cokriging for robust design optimization. AIAA J. 50(11), 2351–2364 (2012)

    Article  Google Scholar 

  10. Koziel, S., Leifsson, L.: Surrogate-based aerodynamic shape optimization by variable-resolution models. AIAA J. 51(1), 94–106 (2013)

    Article  Google Scholar 

  11. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  12. Mei, Y., Tang, K., Yao, X.: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans. Evol. Comput. 15(2), 151–165 (2011). doi:10.1109/TEVC.2010.2051446

    Article  Google Scholar 

  13. Miettinen, K.M.: Nonlinear Multiobject. Optim. Kluwer, Norwell, MA (1999)

    Google Scholar 

  14. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Dixon, L.C.W., Szego, G.P. (eds.) Toward Glob. Optim., vol. 2, pp. 117–129. Elsevier, Amsterdam (1978)

    Google Scholar 

  15. Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995)

    Article  MATH  Google Scholar 

  16. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution algorithms. In: Differential Evolution: A Practical Approach to Global Optimization, pp. 37–47. Springer, New York (2005)

  17. Rumpfkeil, M.P.: Optimizations under uncertainty using gradients, Hessians, and surrogate models. AIAA J. 51(2), 444–451 (2013)

    Article  Google Scholar 

  18. Sasaki, D., Obayashi. S., Sawada, K., Himen, R.: Multiobjective aerodynamic optimization of supersonic wings using Navier-Stokes equations. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain (2000)

  19. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34, 263–278 (2002)

    Article  Google Scholar 

  20. Schonlau, M.: Computer Experiments and Global Optimization. University of Waterloo, Waterloo (1997)

    Google Scholar 

  21. Simpson, T.W., Peplinsk, J.D., Koch, P.N.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17(2), 129–150 (2001)

    Article  MATH  Google Scholar 

  22. Sobester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on global response surface approximation models. J. Glob. Optim. 33, 31–59 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  24. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the associate editor for his very helpful and constructive comments, which have helped to improve the quality of this paper significantly. This research was supported by the National Natural Science Foundation of China under the Grant of 11272345 and 51375486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zhang, Q., Zhang, Q. et al. A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization. J Glob Optim 61, 677–694 (2015). https://doi.org/10.1007/s10898-014-0210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0210-2

Keywords

Navigation