Skip to main content
Log in

Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper aims to study a broad class of generalized semi-infinite programming problems with (upper and lower level) objectives given as the difference of two convex functions, and (lower level) constraints described by a finite number of convex inequalities and a set constraints. First, we are interested in some various lower level constraint qualifications for the problem. Then, the results are used to establish efficient upper estimate of certain subdifferential of value functions. Finally, we apply the obtained subdifferential estimates to derive necessary optimality conditions for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burachik R., Jeyakumar V.: Dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 15, 540–554 (2005)

    Google Scholar 

  2. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, London (1983)

    Google Scholar 

  3. Dinh N., Goberna M.A., López M.A.: From linear to convex sysrem: consistency, Farkas’ lemma and applications. J. Convex Anal. 13, 279–290 (2006)

    Google Scholar 

  4. Dinh N., Goberna M.A., López M.A., Son T.Q.: New Farkas-type results with applications to convex infinite programming. ESIAM Control Optim. Cal. Var. 13, 580–597 (2007)

    Article  Google Scholar 

  5. Dinh, N., Nghia, T.T.A., Vallet, G.: A closedness condition and its applications to DC programs with convex constraints. Laboratory of Applied Mathematics of Pau 0622 (Preprint, 2006)

  6. Dinh N., Vallet G., Nghia T.T.A.: Farkas-type results and duality for DC programmingwith convex constraints. J. Convex Anal. 15, 235–262 (2008)

    Google Scholar 

  7. Guerra-Vazquez, F., Jongen, H.Th., Shikhman, V.: General semi-infinite programming: symmetric Mangasarian-Fromovitz constraint qualification and the closure of the feasible set. SIAM J. Optim. (to appear, 2010)

  8. Hartman P.: On functions representable as a difference of convex functions. Pac. J. Math. 9, 707–713 (1959)

    Article  Google Scholar 

  9. Hiriart- Urruty J.B., Lemarechal C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1991)

    Google Scholar 

  10. Horst R., Thoai N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  Google Scholar 

  11. Jeyakumar V.: Asimptotic dual conditions chracterizing optimality for convex programs. J. Optim. Theory Appl. 93, 153–165 (1997)

    Article  Google Scholar 

  12. Jeyakumar, V., Dinh, N., Lee, G.M.: A New Closed Cone Constraint Qualification for Convex Programs. Applied Mathematics Research Report AMR04/8, School of Mathematics, University of new South Wales, Australia (2004)

  13. Jongen H.T., Rückmann J.J., Stein O.: Generalized semi-infinite optimization: a first-order optimality condition and examples. Math. Program. 83, 145–158 (1998)

    Google Scholar 

  14. Kanzi N., Nobakhtian S.: Optimality conditions for nonsmooth semi-infinite programming. Optimization 59, 717–727 (2008)

    Article  Google Scholar 

  15. Li W., Nahak C., Singer I.: Constraint qualifications in semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 31–52 (2000)

    Article  Google Scholar 

  16. Mordukhovich B.S.: Variational Analysis and Generalized Differentiation. Springer, Berlin (2006)

    Google Scholar 

  17. Penot J.-P.: On the minimization of difference functions. J. Global Optim. 12, 373–382 (1998)

    Article  Google Scholar 

  18. Pontrjagin, L.S.: Linear differential games II. Sov. Math. 8 (1967)

  19. Rückmann J.J., Stein, O.: On convex lower level problems in generalized semi-infinite optimization. In: Goberna, M.A., López, M.A. (eds) Semi-Infinite Programming-Recent Advances, pp. 121–134. Kluwer, Boston (2001)

    Google Scholar 

  20. Rückman J.J., Shapiro A.: First-order optimality conditions in generalized semi-infinite Programming. J. Optim. Theory Appl. 101, 677–691 (1999)

    Article  Google Scholar 

  21. Stein O.: First order optimality conditions for degenerate index sets in generalized semi-infinite Programming. Math. Oper. Res. 26, 565–582 (2001)

    Article  Google Scholar 

  22. Stein O.: Bi-Level Strategies in Semi-Infinite Programming. Kluwer, Boston (2003)

    Google Scholar 

  23. Tuy H.: Convex Analysis and Global Optimization. Kluwer, Boston (1998)

    Book  Google Scholar 

  24. Vazquez F.G., Rückmann J.J.: Extensions of the Kuhn-Tucker constraint qualification to generalized semi-infinite Programming. SIAM J. Optim. 15, 926–937 (2005)

    Article  Google Scholar 

  25. Ye J.J., Wu S.Y.: First order optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory Appl. 137, 419–434 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Kanzi.

Additional information

This research was in part supported by a grant from IPM (No. 89900022).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzi, N. Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems. J Glob Optim 56, 417–430 (2013). https://doi.org/10.1007/s10898-011-9828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9828-5

Keywords

Mathematics Subject Classification (2000)

Navigation