Skip to main content
Log in

Excimer Fluorescence of Acriflavine Dye in Glycerol and Ethylene Glycol

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This research investigates the excimerisation of acriflavine dye in ethylene glycol and glycerol solvents. Acriflavine, a member of the acridine dye family, exhibits unique fluorescence properties with applications in various fields, including cellular nucleus observation, nucleic acid analysis, and dye laser active media etc. The study explores the impact of solvent and concentration on acriflavine's emission properties, with a focus on excimer formation, which can influence its suitability as a dye laser active medium. UV-Visible absorption spectroscopy reveals concentration-dependent absorption profiles, with distinctive monomer bands. Steady-state fluorescence studies demonstrate the emergence of red-shifted excimer fluorescence bands as concentrations increase in both solvents. Temperature-dependent fluorescence studies reveal the dynamics of excimer formation, suggesting dynamic diffusion as the excimerisation mechanism. Time-resolved fluorescence spectroscopy confirms the singlet character of both monomer and excimer states, providing insights into the excimerisation process. Critical concentration values are determined, representing the equilibrium between monomeric and excimeric forms. The study also explores pH-induced spectral shifts, highlighting the influence of acidity on fluorescence properties. Overall, this research deepens our understanding of acriflavine's excimerisation in ethylene glycol and glycerol, offering insights that can enhance its diverse applications, especially in laser technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data generated and analysed during the present study are available from the corresponding author upon reasonable request.

Reference

  1. Sinha TB, Singharoy D, Das HS, Gupta S, Khatua PK (2019) Photophysical studies of the dye 1-Anilinonapthalene-8-sulfonic acid in different solvents and its quantum chemical investigation. J. Mol. Struct. 1179:462–468. https://doi.org/10.1016/j.molstruc.2018.11.012

    Article  CAS  Google Scholar 

  2. Sharma VK, Sahare PD, Rastogi RC, Ghoshal SK, Mohan D (2003) Excited state characteristics of acridine dyes: Acriflavine and acridine orange. Spectrochim Acta - Part A Mol Biomol Spectrosc 59:1799–1804. https://doi.org/10.1016/S1386-1425(02)00440-7

    Article  CAS  Google Scholar 

  3. Lo̊ber G, (1981) The fluorescence of dye-nucleic acid complexes. J Lumin 22:221–265. https://doi.org/10.1016/0022-2313(81)90022-3

    Article  Google Scholar 

  4. Maeda M (1984) Laser Dyes. Academic press, New York

    Google Scholar 

  5. Previtali CM (1980) CHAPTER VI Transfer Processes. In: International Geophysics. pp 261–320. https://doi.org/10.1016/S0074-6142(08)60507-0

  6. Li Y, Kuwabara H, Gong YK et al (2003) Resonance energy transfer from dibucaine to acriflavine in polystyrene latex dispersions. J Photochem Photobiol B Biol 70:171–176. https://doi.org/10.1016/S1011-1344(03)00090-3

    Article  CAS  Google Scholar 

  7. Chakraborty S, Hussain SA (2019) Fluorescence resonance energy transfer (FRET) between acriflavine and CdTe quantum dot. Mater Today Proc 46:6087–6090. https://doi.org/10.1016/j.matpr.2020.02.757

    Article  CAS  Google Scholar 

  8. Misra V, Mishra H, Joshi HC, Pant TC (2000) Excitation energy transfer between acriflavine and rhodamine 6G as a pH sensor. Sensors Actuators, B Chem 63:18–23. https://doi.org/10.1016/S0925-4005(00)00296-3

    Article  CAS  Google Scholar 

  9. Sahare PD, Sharma VK, Mohan D, Rupasov AA (2008) Energy transfer studies in binary dye solution mixtures: Acriflavine + Rhodamine 6G and Acriflavine + Rhodamine B. Spectrochim Acta - Part A Mol Biomol Spectrosc 69:1257–1264. https://doi.org/10.1016/j.saa.2007.07.003

    Article  CAS  Google Scholar 

  10. Sorokin PP, Lankard JR (1966) Stimulated emission observed from an organic dye. IBM J Res Dev 10:162–163. https://doi.org/10.1147/rd.102.0162

    Article  CAS  Google Scholar 

  11. Yamaguchi Y, Matsubara Y, Ochi T, Wakamiya T, Yoshida ZI (2008) How the π conjugation length affects the fluorescence emission efficiency. J Am Che Soc 130:13867–13869. https://doi.org/10.1021/ja8040493

    Article  CAS  Google Scholar 

  12. Denisov LK, Uzhinov BM (1980) Heterocyclic compounds as the active media of lasers (review). Chem Heterocycl Compd 16:553–564. https://doi.org/10.1007/BF02400891

    Article  Google Scholar 

  13. Latz HW (1976) Dye Lasers. In: Wehry EL (ed) Modern Fluorescence Spectroscopy. Modern Analytical Chemistry. Springer, Boston, pp 83-119

  14. Ghanadzadeh A, Zeini A, Kashef A, Moghadam M (2009) Solvent polarizability and anisotropy effects on the photophysical behavior of oxazine 1: An appropriate polarizability indicator dye. Spectrochim Acta A Mol Biomol Spectrosc 73:324–329. https://doi.org/10.1016/j.saa.2009.02.029

    Article  CAS  PubMed  Google Scholar 

  15. Drexhage KH (1973) Structure and Properties of Laser Dyes. In: Schäfer FP (eds) Dye Lasers. Topics in Applied Physics, vol 1, Springer, Berlin, Heidelberg, pp 144–193

  16. Zhang Y, Li D, Ou Y, Pu X, Sun Y (2019) The Study on Lasing Threshold Properties of Rhodamine B in Glycerol Aqueous Solution. IEEE Photonics J 11:1–9. https://doi.org/10.1109/JPHOT.2019.2907469

    Article  Google Scholar 

  17. Swargiary H, Radiul SM, Kalita MPC, Hazarika S (2023) Photoexcimerisation of pure acriflavine dye in water and alcohol. J Photochem Photobiol A Chem. https://doi.org/10.1016/j.jphotochem.2023.114636

    Article  Google Scholar 

  18. Levshin LV (1955) The effect of concentration on the optical properties of solutions of 3, 6- diaminoacridine. J Exper Theoret Phys USSR 28:201–212

    Google Scholar 

  19. Haugen GR, Melhuish WH (1964) Association and self-quenching of proflavine in water. Trans Faraday Soc 60:386–394. https://doi.org/10.1039/TF9646000386

    Article  CAS  Google Scholar 

  20. 3,6-Diamino-10-methylacridinium chloride hydrochloride (2022). https://pubchem.ncbi.nlm.nih.gov/compound/15558347#section=Spectral-Information. Accessed 12 Dec 2022

  21. Matzke KH, Thiessen G (1976) The acridine dyes: Their purification, physicochemical, and cytochemical properties. Histochemistry 49:73–79. https://doi.org/10.1007/BF00490128

    Article  CAS  PubMed  Google Scholar 

  22. Serra F, Terentjev EM (2010) Nonlinear Absorption of Light in Materials with Long-lived Excited States. In: Evans T (ed) Nonlinear Dynamics, InTech, Europe, pp 1-30

  23. Sato M, Azumi T, Azumi H (1967) Delayed thermal excimer fluorescence of acriflavine in a stretched PVA sheet. Bull Chem Soc Jpn 40:1031–1034

    Article  CAS  Google Scholar 

  24. Birks JB, Dyson DJ, Munro IH (1963) Excimer fluorescence II. Lifetime Studies of pyrene solutions. Proc R Soc A: Math Phys Eng Sci 275:575–588

    CAS  Google Scholar 

  25. Stevens B, Hutton E (1960) Radiative life-time of the pyrene dimer and the possible role of excited dimers in energy transfer processes. Nature 186:1045–1046

    Article  CAS  Google Scholar 

  26. Wen W, Hsu R (1962) Effect of dimerization upon the α-phosphorescence of acriflavine in glucose glass. J Phys Chem 66:1353–1354

    Article  CAS  Google Scholar 

  27. Lim EC, Swenson GW (1962) Delayed fluorescence of acriflavine in rigid media. J Chem Phys 36:118–122

    Article  Google Scholar 

  28. Fonin AV, Sulatskaya AI, Kuznetsova IM, Turoverov KK (2014) Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. PLoS One 9:e103878. https://doi.org/10.1371/journal.pone.0103878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevens B (1961) Evidence for the photo-association of aromatic hydrocarbons in fluid media. Nature 192:725–727

    Article  CAS  Google Scholar 

  30. Oladepo SA (2021) Temperature-dependent fluorescence emission of 4-cyano-4′-pentylbiphenyl and 4-cyano-4′-hexylbiphenyl liquid crystals and their bulk phase transitions. J Mol Liq 323:114590

    Article  CAS  Google Scholar 

  31. Horrocks DL (1970) Techniques for the study of excimers. In: Horrocks DL, Peng CT (eds) Proceedings of the International Conference on Organic Scintillators and Liquid Scintillation Counting, University of California, San Francisco, pp 75-90. https://doi.org/10.1016/B978-0-12-356250-0.50007-5

  32. Picüarra S, Gomes PT, Martinho JMG (2000) Fluorescence study of the coil-globule transition of a poly(e-caprolactone) chain labeled with pyrenes at both ends. Macromolecules 33:3947–3950

    Article  Google Scholar 

  33. Radiul SM, Chowdhury J, Goswami A, Hazarika S (2022) Fluorescence spectroscopy-based characterisation method for aggregation behaviour rhodamine B in water, ethanol, and propanol. Laser Phys 32 075602 (9pp)

  34. Wang S, Zhang Z, Huang Z, Lei X, Wang Y, Li L, Yang L, Liu H, Sun F, Ma LJ (2021) A pyrene-based pH fluorescence probe with continuous multiple responses under acidic conditions and its application for environmental water systems and cells. J Photochem Photobiol A: Chem 418:113438. https://doi.org/10.1016/j.jphotochem.2021.113438

    Article  CAS  Google Scholar 

  35. Radiul SM, Chowdhury J, Hazarika S (2023) Fluorescent H-aggregates of pure rhodamine B (RhB) in glycerol, ethylene glycol, methanol and butanol under ambient condition. J Mol Struct 1275:134606. https://doi.org/10.1016/j.molstruc.2022.134606

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Science and Engineering Research Board, Department of Science and Technology, Government of India for the grant, No. CRG/2021/002942. Author SH wishes to thank FIST (DST) grant SR/FST/PSI-213/2016(C).

Funding

This work was supported by the Science and Engineering Research Board, Department of Science and Technology, Government of India (Project No. CRG/2021/002942).

Author information

Authors and Affiliations

Authors

Contributions

Simanta Hazarika: Conceptualisation, Methodology, Investigation, Supervision, Formal Analysis, Visualisation, Writing-original Draft. Hiren Swargiary: Investigation, Formal Analysis, Visualisation, Writing-original Draft. Seikh Mustafa Radiul: Investigation, Formal Analysis, Visualisation, Writing-original Draft.

Corresponding author

Correspondence to Simanta Hazarika.

Ethics declarations

Ethics Approval

NA.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swargiary, H., Radiul, S.M. & Hazarika, S. Excimer Fluorescence of Acriflavine Dye in Glycerol and Ethylene Glycol. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03686-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03686-w

Keywords

Navigation