Skip to main content
Log in

Chalcone-based Turn-Off Chemosensor for Selective and Susceptible Detection of Fe2+ Ions: Spectroscopic and DFT Investigations

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, in this report we are introducing newly synthesized chalcone derivative, “(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one” (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M−1 with the help of the Stern–Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10–5 M and 14.54 × 10–5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2:
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Code Availability

Not applicable.

References:

  1. Lee Jung Heon, Wang Zidong, Liu Juewen, Lu Yi (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luong JHT, Majid E, Male KB (2007) Analytical tools for monitoring arsenic in the environment. Open Anal Chem J 1:7–14

    Article  CAS  Google Scholar 

  3. Korolczuk M, Moroziewicz A, Grabarczyk M (2005) Determination of subnanomolar concentrations of cobalt by adsorptive stripping voltammetry at a bismuth film electrode. Anal Bioanal Chem 382:1678–1682

    Article  CAS  PubMed  Google Scholar 

  4. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  5. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  CAS  PubMed  Google Scholar 

  6. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  7. De Silva AP, Gunaratne HN, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  8. Harsanyi G (2000). Sensors in biomedical applications: fundamentals, technology and applications (CRC press)

  9. Mohan B, Kumar S, Sharma HK (2020) Synthesis and characterizations of flexible furfural based molecular receptor for selective recognition of Dy (III) ions. Polyhedron 183:114537

    Article  CAS  Google Scholar 

  10. Mohan B, Ma S, Kumar S, Yang Y, Ren P (2023) Tactile sensors: Hydroxyl decorated silver metal-organic frameworks for detecting Cr2O72–, MnO4–, humic acid, and Fe3+ ions. ACS Appl Mater Interfaces 15:17317–17323

    Article  CAS  PubMed  Google Scholar 

  11. Mohan B, Kumar S, Modi K, Sharma HK, Kumar A (2021) 5-Bromo-1H-indol based flexible molecular receptor possessing spectroscopic characteristics for detection of Sm (III) and Dy (III) ions. Inorg Chim Acta 519:120275

    Article  CAS  Google Scholar 

  12. Mason CF (2002) Biology of freshwater pollution. Pearson Education

  13. Lopez CA, Skaar EP (2018) The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe 23:737–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    Article  CAS  PubMed  Google Scholar 

  15. Beutler E (2004) “ Pumping” iron: The proteins. Science 306:2051–2053

    Article  CAS  PubMed  Google Scholar 

  16. Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S, Eklund H (2000) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287:655–658

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Atkinson A, Winge DR (2009) Metal acquisition and availability in the mitochondria. Chem Rev 109:4708–4721

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109:4536–4552

    Article  CAS  PubMed  Google Scholar 

  19. Theil EC, Goss DJ (2009) Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 109:4568–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164

    PubMed  PubMed Central  Google Scholar 

  21. Camaschella C (2015) Iron-deficiency anemia. N Engl J Med 372:1832–1843

    Article  PubMed  Google Scholar 

  22. Dornelles AS, Garcia VA, de Lima MN, Vedana G, Alcalde LA, Bogo MR, Schröder N (2010) mRNA expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period. Neurochem Res 35:564–571

    Article  CAS  PubMed  Google Scholar 

  23. Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146:1041–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molina-Holgado F, Hider RC, Gaeta A, Williams R, Francis P (2007) Metals ions and neurodegeneration. Biometals 20:639–654

    Article  CAS  PubMed  Google Scholar 

  25. Bhuvanesh N, Velmurugan K, Suresh S, Prakash P, John N, Murugan S, Thangadurai TD, Nandhakumar R (2017) Naphthalene based fluorescent chemosensor for Fe2+-ion detection in microbes and real water samples. J Lumin 188:217–222

    Article  CAS  Google Scholar 

  26. Chen C-H, Cho C, Wan C-F, Wu A-T (2014) A colorimetric sensor for Fe2+ ion. Inorg Chem Commun 41:88–91

    Article  Google Scholar 

  27. Asiri AM, Al-Ghamdi NSM, Dzudzevic-Cancar H, Kumar PKhan SA (2019) Physicochemical and Photophysical investigation of newly synthesized carbazole containing pyrazoline-benzothiazole as fluorescent chemosensor for the detection of Cu2+, Fe3+ & Fe2+ metal ion. J Mol Struct 1195:670–680

    Article  ADS  CAS  Google Scholar 

  28. Nagarajan R, Vanjare BD, Lee KH (2021) The first tryptophan based turn-off chemosensor for Fe2+ ion detection. Spectrochim Acta Part A Mol Biomol Spectrosc 262:120103

    Article  CAS  Google Scholar 

  29. Mohan B, Xing T, Kumar S, Kumar S, Ma S, Sun F, Xing D, Ren P (2022) A chemosensing approach for the colorimetric and spectroscopic detection of Cr3+, Cu2+, Fe3+, and Gd3+ metal ions. Sci Total Environ 845:157242

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2013) Gaussian 09, Version D. 01; Software for Calculation. Gaussian. Inc., Wallingford, CT, USA

    Google Scholar 

  31. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics 4:1–17

    Article  Google Scholar 

  32. Zhang IY, Wu J, Xu X (2010) Extending the reliability and applicability of B3LYP. Chem Commun 46:3057–3070

    Article  CAS  Google Scholar 

  33. Jamroz MH (2004) Vibrational energy distribution analysis VEDA 4. Warsaw

  34. Marques MA, Maitra NT, Nogueira FM, Gross EK, Rubio A (2012) Fundamentals of time-dependent density functional theory. Berlin, Heidelberg

  35. Improta R (2011) UV–visible absorption and emission energies in condensed phase by PCM/TD‐DFT methods. Computational strategies for spectroscopy: from small molecules to nano systems. John Wiley & Sons, pp 37-75

  36. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  37. a|e - UV-Vis-IR Spectral Software 1.2, FluorTools, www.fluortools.com

  38. Taniguchi M, Du H, Lindsey JS (2018) PhotochemCAD 3: diverse modules for photophysical calculations with multiple spectral databases. Photochem Photobiol 94:277–289

    Article  CAS  PubMed  Google Scholar 

  39. Yamuna T, Yathirajan H, Jasinski JP, Keeley AC, Narayana B, Sarojini B (2013) (2E)-1-(4-Chlorophenyl)-3-(4-nitrophenyl) prop-2-en-1-one. Acta Crystallogr Sect E: Struct Rep Online 69:o790–o791

    Article  CAS  PubMed  Google Scholar 

  40. Khamees HA, Jyothi M, Khanum SA, Madegowda M (2018) Synthesis, crystal structure, spectroscopic characterization, docking simulation and density functional studies of 1-(3, 4-dimethoxyphenyl)-3-(4-flurophenyl)-propan-1-one. J Mol Struct 1161:199–217

    Article  ADS  CAS  Google Scholar 

  41. De Toledo T, Da Silva L, Teixeira A, Freire P, Pizani P (2015) Characterization of Meldrum’s acid derivative 5-(5-Ethyl-1, 3, 4-thiadiazol-2-ylamino) methylene-2, 2-dimethyl-1, 3-dioxane-4, 6-dione by Raman and FT-IR spectroscopy and DFT calculations. J Mol Struct 1091:37–42

    Article  ADS  Google Scholar 

  42. Er M, Isildak G, Tahtaci H, Karakurt T (2016) Novel 2-amino-1, 3, 4-thiadiazoles and their acyl derivatives: Synthesis, structural characterization, molecular docking studies and comparison of experimental and computational results. J Mol Struct 1110:102–113

    Article  ADS  CAS  Google Scholar 

  43. Kerru N, Gummidi L, Bhaskaruni SV, Maddila SN, Singh P, Jonnalagadda SB (2019) A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1, 3, 4-thiadiazole. Sci Rep 9:19280

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balachandran V, Janaki A, Nataraj A (2014) Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide. Spectrochim Acta Part A Mol Biomol Spectrosc 118:321–330

    Article  ADS  CAS  Google Scholar 

  45. Revanna BN, Madegowda M (2021) Dithiane based boronic acid as a carbohydrate sensor in an aqueous solution at pH 7.5: theoretical and experimental approach. J Fluoresc 31:1683–1703

    Article  CAS  PubMed  Google Scholar 

  46. Khamees HA, Revanna BN, Madegowda M, Sebastian J, Haruvegowda DB, Kumar S (2020) Structural, quantum chemical and spectroscopic investigations on photophysical properties of fluorescent saccharide sensor: Theoretical and experimental studies. ChemistrySelect 5:5227–5238

    Article  CAS  Google Scholar 

  47. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. John Wiley & Sons

    Book  Google Scholar 

  48. Kumar A, Kumar R, Gupta A, Tandon P, D’silva ED (2017) Molecular structure, nonlinear optical studies and spectroscopic analysis of chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one by DFT calculations. J Mol Struct 1150:166–178

    Article  ADS  CAS  Google Scholar 

  49. Chandra S, Chowdhury J, Ghosh M, Talapatra G (2011) Adsorption of 3-thiophene carboxylic acid on silver nanocolloids: FTIR, Raman, and SERS study aided by density functional theory. J Phys Chem C 115:14309–14324

    Article  CAS  Google Scholar 

  50. Improta R, Barone V (2004) Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: A TD-DFT quantum mechanical study. J Am Chem Soc 126:14320–14321

    Article  CAS  PubMed  Google Scholar 

  51. Mohan B, Kumar S, Ma S, You H, Ren P (2021) Mechanistic insight into charge and energy transfers of luminescent metal–organic frameworks based sensors for toxic chemicals. Adv Sustain Syst 5:2000293

    Article  CAS  Google Scholar 

  52. Hu S, Zhang S, Gao C, Xu C, Gao Q (2013) A new selective fluorescent sensor for Fe3+ based on a pyrazoline derivative. Spectrochim Acta Part A Mol Biomol Spectrosc 113:325–331

    Article  ADS  CAS  Google Scholar 

  53. Khan SA (2020) Multi-step synthesis, photophysical and physicochemical investigation of novel pyrazoline a heterocyclic D-π-A chromophore as a fluorescent chemosensor for the detection of Fe3+ metal ion. J Mol Struct 1211:128084

    Article  CAS  Google Scholar 

  54. Revanna BN, Madegowda M, Rangaswamy J, Naik N (2022) A novel Schiff base derivative as a fluorescent probe for selective detection of Cu2+ ions in buffered solution at pH 7.5: Experimental and quantum chemical calculations. J Mol Struct 1254:132327

    Article  CAS  Google Scholar 

  55. Ingham K (1975) On the application of Job’s method of continuous variation to the stoichiometry of protein-ligand complexes. Anal Biochem 68:660–663

    Article  CAS  PubMed  Google Scholar 

  56. Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21–25

    Article  Google Scholar 

  57. Prajapati S, Sinha P, Hindore S, Jana S (2023) Selective turn-on fluorescence sensing of Fe2+ in real water samples by chalcones. Spectrochim Acta Part A Mol Biomol Spectrosc 287:122107

    Article  CAS  Google Scholar 

  58. So H, Lee M, Kim C (2020) A unique thiosemicarbazide-based colorimetric chemosensor for Fe2+ in pure aqueous solution with the lowest detection limit. ChemistrySelect 5:10521–10525

    Article  CAS  Google Scholar 

  59. Sasan S, Chopra T, Gupta A, Tsering D, Kapoor KK, Parkesh R (2022) Fluorescence “turn-off” and colorimetric sensor for Fe2+, Fe3+, and Cu2+ ions based on a 2, 5, 7-triarylimidazopyridine scaffold. ACS Omega 7:11114–11125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu X, Duan Y, Li P, Fan H, Han T, Huang X (2019) A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron (III), iron (II), and copper (II) ions. Anal Methods 11:642–647

    Article  CAS  Google Scholar 

  61. Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescent chemosensor for iron: discrimination of Fe 2+ and Fe 3+ and living cell application. Analyst 137:3335–3342

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Majumdar D, Das D, Sreejith S, Das S, Biswas JK, Mondal M, Ghosh D, Bankura K, Mishra D (2019) Dicyanamide-interlaced assembly of Zn (II)-schiff-base complexes derived from salicylaldimino type compartmental ligands: Syntheses, crystal structures, FMO, ESP, TD-DFT, fluorescence lifetime, in vitro antibacterial and anti-biofilm properties. Inorg Chim Acta 489:244–254

    Article  CAS  Google Scholar 

  63. Swamynayaka A, Srinivas MS, Vahini V, Khamees HA, Madegowda M, Hegde VN, Hegde TA, Vinitha G (2022) Third-order nonlinear optical studies of Bis (4-methylbenzylammonium) tetrachloridocuprate metal-organic crystal with optical limiting behavior: Experimental and theoretical investigations. J Mol Struct 1269:133827

    Article  CAS  Google Scholar 

  64. Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Department of Science and Technology (DST), the Government of Karnataka, and the Karnataka Science and Technology Promotion Society (K-STePS) are all acknowledged for their financial support of this study on behalf of the author, Bhavya N.R. The FT-IR, lifetime and ESI-MS data were provided by the Sophisticated Analytical Instrumentation facility (SAIF), Indian Institute of Technology, Madras, for which the authors are grateful. Additionally, University of Mysore, a University with Potential for Excellence (UPE), for providing facilities for fluorescence and UV-absorption spectroscopy. We appreciate Dr. Jeyaseelan S. for providing the computational resources.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Methodology, Validation, Investigation, Software, Formal analysis, and writing – Original draft by Bhavya Nelligere Revanna. Conceptualization, Methodology, Supervision, writing-Review & Editing by Mahendra Madegowda. Investigations, Resources, and data collection were performed by Vinuta Kamat, Ananda Swamynayaka, Keshav Kumar Harish, Keerthikumara Venkatesha, Boja Poojary, Sanjay S. Majani and Shiva Prasad Kollur. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahendra Madegowda.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10895_2024_3646_MOESM1_ESM.docx

Synthesis procedure along with schemes, additional figures and tables are provided in supplementary information (SI) (DOCX 4070 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revanna, B.N., Kamat, V., Swamynayaka, A. et al. Chalcone-based Turn-Off Chemosensor for Selective and Susceptible Detection of Fe2+ Ions: Spectroscopic and DFT Investigations. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03646-4

Keywords

Navigation