Skip to main content
Log in

Synthesis of V-shaped Thiophene Based Rotor-Stilbene: Substituent Dependent Aggregation and Photophysical Properties

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Thiophene core V-shaped rotor-stilbene derivatives have been synthesized utilizing two-fold Heck coupling reaction. These compounds are blue emitters with moderate quantum yield in dilute solution. Rotor nature of the synthesized stilbenes supports aggregation induced emission (AIE) behaviour and they show substituent dependent emission behavior in aggregate state. In presence of donating groups (e.g., tert-butyl, methoxy, diphenylamine group) in stilbenes, they exhibit AIE property. But with the introduction of electron withdrawing group (nitro group), they shows aggregation caused quenching (ACQ) behavior. Different types of nano-aggregates formation is observed in aggregated state, which was confirmed by dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies. The details photophysical (absorption, fluorescence, and lifetime), electrochemical property (cyclic voltammetry) and thermal stability have been investigated. Optimized structure, energy and electronic distribution of molecular orbitals have been studied by theoretical calculation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Data available on request from the author.

References

  1. Zhang Y, Huang J, Kong L, Tian Y, Yang J (2018) Two novel AIEE-active imidazole/ α-cyanostilbene derivatives: Photophysical properties, reversible fluorescence switching, and detection of explosives. Cryst Eng Comm 20:1237–1244. https://doi.org/10.1039/c7ce01842h

    Article  CAS  Google Scholar 

  2. Fang W, Zhao W, Pei P, Liu R, Zhang Y, Kong L, Yang J (2018) A Λ-shaped cyanostilbene derivative: multi-stimuli responsive fluorescence sensors, rewritable information storage and colour converter for w-LEDs. J Mater Chem C 6:9269–9276. https://doi.org/10.1039/c8tc02973c

    Article  CAS  Google Scholar 

  3. Fourati MA, Maris T, Skene WG, Bazuin CG, Prud’homme RE (2011) Photophysical, Electrochemical and Crystallographic Investigations of the Fluorophore 2,5-Bis(5-tert-butyl-benzoxazol-2-yl)thiophene. J Phys Chem B 115:12362–12369. https://doi.org/10.1021/jp207136k

    Article  CAS  PubMed  Google Scholar 

  4. Chang CC, Hsieh MC, Lin JC, Chang TC (2012) Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles. Biomaterials 33:897–906. https://doi.org/10.1016/j.biomaterials.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  5. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. https://doi.org/10.1039/c1cs15113d

    Article  CAS  PubMed  Google Scholar 

  6. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv Mater 26:5429–5479. https://doi.org/10.1002/adma.201401356

    Article  CAS  PubMed  Google Scholar 

  7. Seylar J, Stasiouk D, Simone DL, Varshney V, Heckler JE, McKenzie R (2021) Breaking the bottleneck: stilbene as a model compound for optimizing 6p e− photocyclization efficiency. RSC Adv 11:6504–6508. https://doi.org/10.1039/d0ra10619d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boxi S, Jana D, Ghorai BK (2019) Synthesis and optical properties of bipolar quinoxaline-triphenylamine based stilbene compounds. Opt Mater X 100013. https://doi.org/10.1016/j.omx.2019.100013

  9. Imato K, Sasaki A, Ishii A, Hino T, Kaneda N, Ohira K, Imae I, Ooyama Y (2022) Sterically Hindered Stiff-Stilbene Photoswitch Offers Large Motions, 90% Two-Way Photoisomerization, and High Thermal Stability. J Org Chem 87:15762–15770. https://doi.org/10.1021/acs.joc.2c01566

    Article  CAS  PubMed  Google Scholar 

  10. Tomal W, Pilch M, Brekiesz AC, Galek M, Savary FM, Graff B, Dietlin C, Lalev´ee J, Ortyl J (2020) Photoinitiator-catalyst systems based on meta -terphenyl derivatives as photosensitisers of iodonium and thianthrenium salts for visible photopolymerization in 3D printing processes. Polym Chem 11:4604–4621. https://doi.org/10.1039/d0py00597e

    Article  CAS  Google Scholar 

  11. Maeda H, Horikoshi R, Yamaji M, Furuyama T, Segi M (2020) Photophysical Properties of Silyl-Substituted StilbeneDerivatives. Eur J Org Chem 3410–3422. https://doi.org/10.1002/ejoc.202000397

  12. Villarón D, Wezenberg S (2020) Stiff-Stilbene photoswitches: from fundamental studies to emergent applications. Angew Chem Int Ed 59:13192–13202. https://doi.org/10.1002/ange.20200103113192

    Article  Google Scholar 

  13. Baig MZK, Sahu PK, Sarkar M, Chakravarty M (2017) Haloarene-Linked Unsymmetrically Substituted Triarylethenes: SmallAIEgens To Detect Nitroaromatics and Volatile Organic Compounds. J Org Chem 82:13359–13367. https://doi.org/10.1021/acs.joc.7b02438

    Article  CAS  Google Scholar 

  14. Zhao ZJ, Lu P, Lam JWY, Wang ZM, Chan CKY, Sung HHY, Williams ID, Ma YG, Tang BZ (2011) Molecular anchors in the solid state: restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chem Sci 2:672–675. https://doi.org/10.1039/c0sc00521e

    Article  CAS  Google Scholar 

  15. Mahmoodi A, Panahi F, Eshghi F, Kimiaei E (2018) A novel tetra-stilbene-based fluorescent compound: Synthesis, characterization and photophysical properties evaluation. J Lumin 199:165–173. https://doi.org/10.1016/j.jlumin.2018.03.033

    Article  CAS  Google Scholar 

  16. Sharbati MT, Panahi F, Nekoei AR, Emami F, Niknam K (2014) Blue to red electroluminescence emission from organic light-emitting diodes based on π-conjugated organic semiconductor materials. J Photon Energy 4:043599. https://doi.org/10.1117/1.JPE.4.043599

    Article  CAS  Google Scholar 

  17. Zucchero AJ, Shiels RA, McGrier PL, To MA, Jones CW, Bunz UHF (2009) Cruciform-silica hybrid materials. Chem Asian J 4:262–269. https://doi.org/10.1002/asia.200800316

    Article  CAS  PubMed  Google Scholar 

  18. McGrier PL, Solntsev KM, Miao S, Tolbert LM, Miranda OR, Rotello VM, Bunz UHF (2008) Hydroxycruciforms: amine-responsive fluorophores. Chem Eur J 14:4503–4510. https://doi.org/10.1002/chem.200800296

    Article  CAS  PubMed  Google Scholar 

  19. Zucchero AJ, Tolosa J, Tolbert LM, Bunz UHF (2009) Bis(4′-dibutylaminostyryl)benzene: spectroscopic behavior upon protonation or methylation. Chem Eur J 15:13075–13081. https://doi.org/10.1002/chem.200900608

    Article  CAS  PubMed  Google Scholar 

  20. Freudenberg J, Kumpf J, Schäfer V, Sauter E, Wörner SJ, Brödner K, Dreuw A, Bunz UHF (2013) Water-soluble cruciforms and distyrylbenzenes: synthesis, characterization, and pH-dependent amine-sensing properties. J Org Chem 78:4949–4959. https://doi.org/10.1021/jo400576y

    Article  CAS  PubMed  Google Scholar 

  21. Kumpf J, Freudenberg J, Schwaebel ST, Bunz UHF (2014) Amine sensing with distyrylbenzenes and their hexamethylene-linked polymers: spraying them on. Macromolecules 47:2569–2573. https://doi.org/10.10211/ma500486u

    Article  ADS  CAS  Google Scholar 

  22. Kumpf J, Schwaebel ST, Bunz UHF (2015) Amine detection with distyrylbenzene dialdehyde-based Knoevenagel adducts. J Org Chem 80:5159–5166. https://doi.org/10.1021/acs.joc.5b00577

    Article  CAS  PubMed  Google Scholar 

  23. Lo SC, Burn PL (2007) Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem Rev 107:1097–1116. https://doi.org/10.1021/cr050136l

    Article  CAS  PubMed  Google Scholar 

  24. Wang JX, Wang K, Zhao L, Li H, Fu Y, Hu Y (2006) Palladium-catalyzed stereoselective synthesis of (E)-stilbenes via organozinc reagents and carbonyl compounds. Adv Synth Catal 348:1262–1270. https://doi.org/10.1002/adsc.200606016

    Article  CAS  Google Scholar 

  25. Min X, Yi F, Han XL, Li M, Gao Q, Liang X, Chen Z, Sun Y, Liu Y (2022) Targeted photodynamic therapy using a water-soluble aggregation-Induced emission photosensitizer activated by an acidic tumor microenvironment. Chem Eng Sci 432:134327. https://doi.org/10.1016/j.cej.2021.134327

    Article  CAS  Google Scholar 

  26. Kumar VJ, Wu JZ, Judd M, Rousset E, Korb M, Moggach SA, Cox N, Low PJ (2022) The syntheses, structures and spectroelectrochemical properties of 6-oxoverdazyl derivatives bearing surface anchoring groups. J Mater Chem C 10:1896–1915. https://doi.org/10.1039/d1tc05495c

    Article  CAS  Google Scholar 

  27. Meti P, Gong YD (2022) Unveiling the structure-property relationship of X-shaped pyrazinebased DA type luminophores with tunable aggregation-induced emission. J Photochem Photobiol A 113908. https://doi.org/10.1016/j.jphotochem.2022.113908

  28. Peng XL, Barragan SR, Li ZS, Li QS, Blancafort L (2016) Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. J Mater Chem C 4:2802–2810. https://doi.org/10.1039/c5tc03322e

    Article  CAS  Google Scholar 

  29. Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS (2022) Mechanically triggeredcarbon monoxide release with turn-on Aggregation-Induced Emission. J Am Chem Soc 144:1125–1129. https://doi.org/10.1021/jacs.1c12108

    Article  CAS  PubMed  Google Scholar 

  30. Yuan M, Fang X, Wu Y, Xu Y, Feng H, Mu J, Chen Z, Lin Y, Fu Q, Du W (2022) Activatable nanoprobe with aggregation-induced dual fuorescence and photoacoustic signal enhancement for tumor precision imaging and radiotherapy. Anal Chem 94:5204–5211. https://doi.org/10.1021/acs.analchem.2c00340

    Article  CAS  PubMed  Google Scholar 

  31. Lee YG, Choi JH (2023) Synthesis of some fluorescent dyes based on stilbene derivatives with various substituents and their effects on the absorption maxima. Appl Sci 13:5543. https://doi.org/10.3390/app13095543

    Article  CAS  Google Scholar 

  32. Fourati MA, Skene WG, Bazuin G, Prud’homme RE (2013) Photophysical and Electrochemical Investigations of the FluorescentProbe, 4,4′-Bis(2-benzoxazolyl)stilbene. J Phys Chem A 117:836–844. https://doi.org/10.1021/jp312598c

    Article  CAS  PubMed  Google Scholar 

  33. Xi W, Zhang Y, Chen B, Gan X, Fang M, Zheng J, Wu J, Tian Y, Hao F, Zhou H (2015) A novel stilbene-based organic dye with trans-cis isomer, polymorphism and aggregation-induced emission behavior. Dyes Pigm 122:31e3932. https://doi.org/10.1016/j.dyepig.2015.06.008

    Article  CAS  Google Scholar 

  34. Xu X, Qian Y (2018) A novel D-π-A BODIPY-stilbene with aggregation-induced red emission and its interaction with bovine serum albumin. J Lumin 202:206–211. https://doi.org/10.1016/j.jlumin.2018.05.057

    Article  CAS  Google Scholar 

  35. Rafiquea S, Irshada H, Majeeda S, Khadijaa RR, Imran M, Khana AM, Shahzada SA (2023) AIEE active stilbene based fluorescent sensor with red-shifted emission for vapor phase detection of nitrobenzene and moisture sensing. J Photochem Photobiol, A 437:114459. https://doi.org/10.1016/j.saa.2022.122273

    Article  CAS  Google Scholar 

  36. Wu YH, Huang K, Chen SF, Chen YZ, Tung CH, Wu LZ (2019) Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. Sci China Chem 62:1194–1197. https://doi.org/10.1007/s11426-019-9514-8

    Article  CAS  Google Scholar 

  37. Ganguly T, Pal P, Paul A, Baitalik S (2022) Synthesis and manifold but controllable emission switching of stilbene-appended polyaromatic terpyridine derivatives via aggregation and trans–cis isomerisation. J Photochem Photobiol A 430:113966. https://doi.org/10.1016/j.jphotochem.2022.113966

    Article  CAS  Google Scholar 

  38. Panahi F, Mahmoodi A, Ghodrati S, Abdi AA, Eshghi F (2022) New white light-emitting halochromic stilbenes with remarkable quantum yields and aggregation-induced emission. Sci Rep 12:2385. https://doi.org/10.1038/s41598-022-06435-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakurai H, Maruyama T, Arai T (2017) Photochemistry and aggregation behavior of triethylene glycol (TEG) terminated stilbene dendrimers. Photochem Photobiol Sci 16:1490–1494. https://doi.org/10.1039/c7pp00212b

    Article  CAS  PubMed  Google Scholar 

  40. Tseitler TA, Sidorova LP, Emel’yanov VV, Savateeva EA, Chupakhin ON (2020) Synthesis and Antiglycating Activity of 2-Aminopropylmorpholino-5-Aryl-6H-1,3,4-Thiadiazine Dihydrobromides and 2-Aminopropylmopholino-5-Thienyl-6H-1,3,4-Thiadiazine Dihydrobromides. Pharm Chem J 53:10. https://doi.org/10.1007/s11094-020-02095-0

    Article  CAS  Google Scholar 

  41. Chacko SA, Wenthold PG (2007) Studies of the electron-promoted cope cyclization of 2,5-Phenyl-Substituted 1,5-Hexadiene Radical Anions. J Org Chem 72:494–501. https://doi.org/10.1021/jo0618775

    Article  CAS  PubMed  Google Scholar 

  42. Moore TO, Paradowski M, Ward SE (2016) An atom-efficient and convergent approach to the preparation of NS5A inhibitors by C-H activation. Org Biomol Chem 14:3307. https://doi.org/10.1039/c6ob00340k

    Article  CAS  PubMed  Google Scholar 

  43. Karastatiris P, Mikroyannidis JA, Spiliopoulos IK (2008) Bipolar poly(p-phenylene vinylene)s bearing electron-donating triphenylamine or carbazole and electron-accepting quinoxaline moieties. J Polym Sci Part A: PolymChem 46:2367. https://doi.org/10.1002/pola.22571

    Article  ADS  CAS  Google Scholar 

  44. Zhang J, Cai W, Huang F, Wang E, Zhong C, Liu S, Wang M, Duan C, Yang T, Cao Y (2011) Synthesis of quinoxaline-based donor-acceptor narrow-band-gap polymers and their cyclized derivatives for bulk-heterojunction polymer solar cell applications. Macromolecules 44:894. https://doi.org/10.1021/ma1027164

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Sophisticated Analytical Instrumental Facilities (SAIF), IIEST Shibpur, India, for NMR & HRMS measurement and R.M. is thankful to the Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India for an Institute Fellowship.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Riya Majumder: Conceptualization, Methodology, Validation, Investigation, Formal analysis, Writing – original draft, Data curation, Debabrata Jana: Conceptualization, Validation, Investigation, Writing – review & editing, Formal analysis, Writing – original draft, Binay K. Ghorai: Writing – review & editing, Funding acquisition, Supervision, Project administration.

Corresponding author

Correspondence to Binay Krishna Ghorai.

Ethics declarations

Ethical Approval

There is no ethical approvals needed for this manuscript.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5014 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, R., Jana, D. & Ghorai, B.K. Synthesis of V-shaped Thiophene Based Rotor-Stilbene: Substituent Dependent Aggregation and Photophysical Properties. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03591-2

Keywords

Navigation