Skip to main content
Log in

Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al3+, Fe3+ and Cr3+) Using Schiff Base Probes: At a Glance

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Fig. 4
Fig. 5
Scheme 6
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

No data has been used.

References

  1. Al-fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5:127–136

    CAS  Google Scholar 

  2. Berhanu AL, Gaurav I, Malik Mohiuddin A K, Aulakh JS, Kumar V, Kim KH (2019) A review of the applications of Schiff bases as optical chemical sensors. Trends Anal Chem 116:74–91

    Article  CAS  Google Scholar 

  3. Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian J Occup Environ Med 16:40–44. https://doi.org/10.4103/0019-5278.99696

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G (2018) A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178:324–338

    Article  CAS  PubMed  Google Scholar 

  5. Ghaseminezhad S, Afzali D, Taher MA (2009) Flame atomic absorption spectrometry for the determination of trace amount of rhodium after separation and preconcentration onto modified multiwalled carbon nanotubes as a new solid sorbent. Talanta 80:168–172

    Article  CAS  PubMed  Google Scholar 

  6. Kenduzler E, Ates M, Arslan Z, McHenry M, Tchounwou PB (2012) Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICPMS). Talanta 93:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gomez-Ariza JL, Sánchez-Rodas D, Giráldez I, Morales E (2000) A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta 51:257–268

    Article  CAS  PubMed  Google Scholar 

  8. Anawar HM (2012) Arsenic Speciation in Environmental Samples by Hydride Generation and Electrothermal Atomic Absorption Spectrometry. Talanta 88:30–42

    Article  CAS  PubMed  Google Scholar 

  9. Mekjinda N, Phunnarungsi S, Ruangpornvisuti V, Ritchie RJ, Hamachi I, Ojida A, Wongkongkatep J (2020) Masking phosphate with rare earth elements enables selective detection of arsenate by dipycolylamine-ZnII chemosensor. Sci Rep 10:2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohamed RA, Abdel-Lateef AM, Mahmoud HH, Helal AI (2012) Determination of trace elements in water and sediment samples from Ismaelia Canal using ion chromatography and atomic absorption spectroscopy. Chem Speciat Bioavailab 24:31–38. https://doi.org/10.3184/095422912X13257005726800

    Article  CAS  Google Scholar 

  11. Raju OVS, Prasad PMN, Varalakshmi V, Reddy YVR (2014) Determination of Heavy Metals in Ground Water By Icp-Oes in Selected Coastal Area of Spsr Nellore District, Andhra Pradesh. India Int J Innov Res Sci Eng Technol 3(2):9743–9749

    Google Scholar 

  12. Batsala M, Chandu B, Sakala B, Nama S, Domatoti S (2012) Inductively coupled plasma mass spectrometry (ICP-MS). Int J Res Pharm Chem 2(3):671–680

    CAS  Google Scholar 

  13. Borgese L, Zacco A, Bontempi E, Pellegatta M, Vigna L, Patrini L, Riboldi L, Rubino FM, Depero LE (2010) Use of total reflection X-ray fluorescence (TXRF) for the evaluation of heavy metal poisoning due to the improper use of a traditional ayurvedic drug. J Pharm Biomed Anal 52(5):787–790. https://doi.org/10.1016/j.jpba.2010.02.030

    Article  CAS  PubMed  Google Scholar 

  14. Guinn VP, Wagner D (1960) Instrumental Neutron Activation Analysis. Anal Chem 32(3):317–323. https://doi.org/10.1021/ac60159a005

    Article  CAS  Google Scholar 

  15. Sarzanini C, Bruzzoniti MC (2001) Metal species determination by ion chromatography. Trends Analyt Chem 20(6–7):304–310. https://doi.org/10.1016/S0165-9936(01)00071-1

    Article  CAS  Google Scholar 

  16. Okoye COB, Chukwuneke AM, Ekere NR, Ihedioha JN (2013) Simultaneous ultraviolet-visible (UV–VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. Int J Phys Sci 8(3):98–102. https://doi.org/10.5897/IJPS12.670

    Article  CAS  Google Scholar 

  17. Brett CMA (2001) Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl Chem 73(12):1969–1977. https://doi.org/10.1351/pac200173121969

    Article  CAS  Google Scholar 

  18. Kudr J, Richtera L, Nejdl L, Xhaxhiu K, Vitek P, Rutkay-Nedecky B, Hynek D, Kopel P, Adam V, Kizek R, R (2016) Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide. Materials 9(1):1–12. https://doi.org/10.3390/ma9010031

    Article  CAS  Google Scholar 

  19. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water – An electrochemical approach. Sens Actuators B Chem 213:515–533. https://doi.org/10.1016/j.snb.2015.02.122

    Article  CAS  Google Scholar 

  20. Estela JM, Tomas C, Cladera A, Cerda V (1995) Potentiometric Stripping Analysis: A Review. Rev Anal Chem 25(2):91–141. https://doi.org/10.1080/10408349508050559

    Article  CAS  Google Scholar 

  21. Kai-Cheng Yan KC, Steinbrueck A, Sedwick AC, James TD (2021) Fluorescent chemosensors for ion and molecule recognition: the next chapter. Front Sens 2:731928. https://doi.org/10.3389/fsens.2021.731928

    Article  Google Scholar 

  22. Udhayakumari D, Naha S, Velmathi S (2017) Colorimetric and fluorescent chemosensors for Cu2+ a comprehensive review from the years 2013–15. J Anal Methods 9:552–578. https://doi.org/10.1039/C6AY02416E

    Article  CAS  Google Scholar 

  23. Chen SY, Li Z, Li K, Yu XQ (2021) Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 429:213691. https://doi.org/10.1016/j.ccr.2020.213691

    Article  CAS  Google Scholar 

  24. Upadhyay S, Singh A, Sinha R, Omer S, Negi K (2019) Colorimetric chemosensors for d- metal ions: A review in the past, present and future prospect. J Molstruc 1193:89–102

    CAS  Google Scholar 

  25. Udhayakumari D, Inbaraj V (2020) A review on Schiff base fluorescent chemosensors for cell imaging applications. J Fluorescence 30:1203–1223. https://doi.org/10.1007/s10895-020-02570-7

    Article  CAS  Google Scholar 

  26. Khan S, Chen X, Almahri A, Allehyani ES, Alhumaydhi FA, Ibrahim MM, Ali S (2021) Recent developments in fluorescent and colorimetric chemosensors based on Schiff bases for metallic cations detection: a review. J Environ Chem Eng 9:106381. https://doi.org/10.1016/j.jece.2021.106381

    Article  CAS  Google Scholar 

  27. VinothKumar GG, Kesavan MP, Sivaraman G, Rajesh J (2018) Colorimetric and NIR fluorescence receptors for F- ion detection in aqueous condition and its live cell imaging. Sensor Actuat B-Chem 255:3194–3206. https://doi.org/10.1016/j.snb.2017.09.145

    Article  CAS  Google Scholar 

  28. Udhayakumari D (2020) Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochim Acta A 228:117817

    Article  CAS  Google Scholar 

  29. Saini N, Prigyai N, Wannasiri C, Ervithayasuporn V, Kiatkamjornwong S (2018) Green synthesis of fluorescent N, O- chelating hydrazone Schiff base for multi-analyte sensing in Cu2+, F- and CN- ions. J Photochem Photobiol 358:215–225. https://doi.org/10.1016/j.jphotochem.2018.03.018

    Article  CAS  Google Scholar 

  30. Dalapati S, Jana S, Guchhait N (2014) Anion recognition by simple chromogenic and chromo-fluorogenic salicylidene Schiff base or reduced-Schiff base receptors. Spectrochim Acta A 129:499–508. https://doi.org/10.1016/j.saa.2014.03.090

    Article  CAS  Google Scholar 

  31. Udhayakumari D, Velmathi S, Chen WC, Wu SP (2014) A dual-mode chemosensor: Highly selective colorimetric fluorescent probe for Cu2+ and F- ions. Sensor Actuat B-Chem 204:375–381. https://doi.org/10.1016/j.snb.2014.07.109

    Article  CAS  Google Scholar 

  32. Bhuvanesh N, Suresh S, Prabhu J, Kannan K, Rajesh Kannan V, Nandhakumar R (2018) Ratiometric fluorescent chemosensor for silver ion and its bacterial cell imaging. Opt Mat 82:123–129. https://doi.org/10.1016/j.optmat.2018.05.053

    Article  CAS  Google Scholar 

  33. Boonkitpatarakul K, Wang JF, Niamnont N, Liu B, McDonald L, Pang Y (2015) Sukwattanasinitt M (2015) Novel turn-on fluorescent sensors with mega stoke shifts for dual detection of Al3+ and Zn. ACS Sens 1:144–150

    Article  Google Scholar 

  34. Li S, He J, Xu QH (2020) Aggregation of metal-nanoparticle-induced fluorescence enhancement and its application in sensing. ACS Omega 5:41–48. https://doi.org/10.1021/acsomega.9b03560

    Article  CAS  PubMed  Google Scholar 

  35. Andersen CM, Mortensen G (2008) Fluorescence Spectroscopy: A rapid tool for analyzing dairy products. J Agr Food Chem 56:720–729. https://doi.org/10.1021/jf072025o

    Article  CAS  Google Scholar 

  36. Gowri A, Kathiravan A (2020) Fluorescent chemosensor for detection of water pollutants. Sensors in water pollutants monitoring: role of material. Advanced functional materials and sensors. Springer, pp 147–160. https://doi.org/10.1007/978-981-15-0671-0_9

    Chapter  Google Scholar 

  37. Udhayakumari D (2018) Chromogenic and fluorogenic chemosensors for lethal cyanide ion: A comprehensive review of the year 2016. Sensor Actuat B-Chem 259:1022–1057

    Article  CAS  Google Scholar 

  38. Channa AM, Siyal AN, Memon SQ, Parveen S (2016) Design of experiment for treatment of arsenic contaminated water using Schiff’s base metal complex modified Amberlite XAD-2. Desalin & Water Treat 57:3664–3673. https://doi.org/10.1080/19443994.2014.988658

    Article  CAS  Google Scholar 

  39. Soomro FK, Memon SQ, Memon N, Khuhawar MY (2020) A new Schiff’s base polymer for remediation of phenol, 2-chlorophenol and 2,4-dichlorophenol from contaminated aqueous systems. Polym Bull 77:2367–2383. https://doi.org/10.1007/s00289-019-02852-6

    Article  CAS  Google Scholar 

  40. Antony R, Arun T, Manickam STD (2019) A review on applications of chitosan-based Schiff bases. Inter J Bio Macro 129:615–633. https://doi.org/10.1016/j.ijbiomac.2019.02.047

    Article  CAS  Google Scholar 

  41. Kaczmarek MT, Zabiszak M, Nowak M, Jastrzab R (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 370:42–54

    Article  CAS  Google Scholar 

  42. Das P, Linert W (2016) Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki-Miyaura reaction. Coord Chem Rev 31:11–23. https://doi.org/10.1016/j.ccr.2015.11.010

    Article  CAS  Google Scholar 

  43. Nayak PHA, Naik HSB, Teja HB, Kirthan BR, Viswanath R (2021) Synthesis and opto-electronic properties of green light emitting metal Schiff base complexes. Mol Crystals Liquid Crystals 722(1):67–75. https://doi.org/10.1080/15421406.2020.186805344

    Article  Google Scholar 

  44. Kirthan BR, Prabhakara MC, Bhojyanaik HS, Amith Nayak PH, Viswanath R, Teja HB, Ereshanaik (2022) Optoelectronic, Photocatalytic, and DNA interaction studies of synthesised Cu (II), Co (II), and Ni (II) complexes containing schiff base ligand. Inorganic Chem Comm 135:109109

    Article  CAS  Google Scholar 

  45. Nayak PHA, Naik HSB, Viswanath R, Kirthan BR (2021) Green light emitting fluorescent [Zn (II)(Schiff base)] complexes as electroluminescent material in organic light emitting diodes. J Phys Chem Solids 159:110288. https://doi.org/10.1016/j.jpcs.2021.110288

    Article  CAS  Google Scholar 

  46. Sakthivel A, Jeyasubramanian K, Thangagiri B, Raja JD (2020) Recent advances in schiff base metal complexes derived from 4-aminoantipyrine derivatives and their potential applications. J Mol Struct 1222:128885

    Article  CAS  Google Scholar 

  47. Patil SK, Das D (2017) Substituent-controlled selective and sensitive potential optical fluoride sensors based on salicylidene Schiff base derivatives. Chem Select 2:6178–6186

    CAS  Google Scholar 

  48. Tümay SO, Yeşilot S (2021) Highly selective “turn-on” fluorescence determination of mercury ion in food and environmental samples through novel anthracene and pyrene appended Schiff bases. J Photochem Photobiol A Chem 407:113093

    Article  Google Scholar 

  49. Tümay SO, Şanko V, Demirbas E, Şenocak A (2021) Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples. Food Chem Toxicol 146:111847. https://doi.org/10.1016/j.fct.2020.111847

    Article  CAS  Google Scholar 

  50. Tümay SO (2021) A novel selective “Turn-On” fluorescent chemosensor based on thiophene appended cyclotriphosphazene Schiff base for detection of Ag+ ions. ChemistrySelect 6(39):10561–10572. https://doi.org/10.1002/slct.202102052

    Article  CAS  Google Scholar 

  51. DoĞan S, TÜmay SO, Balci CM, YeŞİlot S, BeŞlİ S (2020) Synthesis of new cyclotriphosphazene derivatives bearing Schiff bases and their thermal and absorbance properties. Turkish J Chem 44(1):31–47

    Article  Google Scholar 

  52. Conkova M, Montes-García V, Konopka M, Ciesielski A, Samori P, Stefankiewicz AR (2022) Schiff base capped gold nanoparticles for transition metal cation sensing in organic media. Chem Commun 58:5773–5776

    Article  CAS  Google Scholar 

  53. Hakan K, Abdul Kadir K, Sureyya Ogug T, Bunyemin C, Yunus Z, Fazil SI (2018) Experimental and theoretical studies of carbazole-based Schiff base as a fluorescent Fe3+ probes. Turkish J Chem 42:221–236. https://doi.org/10.3906/kim-1605-35

    Article  CAS  Google Scholar 

  54. Khan S, Chen X, Almahri A, Allehyani ES, Alhumaydhi FA, Ibrahim MM, Ali S (2021) Recent developments in fluorescent and colorimetric chemosensors based on Schiff bases for metallic cations detection: A review. J Environ Chemical Engg 9:106381. https://doi.org/10.1016/j.jece.2021.106381

    Article  CAS  Google Scholar 

  55. Inbaraj V, Udhayakumari Duraisamy (2023) (A review on Schiff base as colorimetric and fluorescence sensors for d-metal ions. Current Chem Lett 12:739–758

    Article  Google Scholar 

  56. Mohanty P, Behura R, Bhardwaj V, Dash PP, Sahoo SK, Jali BR (2022) Recent advancement on chromo-fluorogenic sensing of aluminum(III) with Schiff bases. Trends Environ Anal Chem 34:e00166

    Article  CAS  Google Scholar 

  57. Kumari N, Singh S, Baral M (2023) Kanungo B K (2023) Schiff Bases: A versatile fluorescence probe in sensing cations. J Fluoresc 33:859–893. https://doi.org/10.1007/s10895-022-03135-6

    Article  CAS  PubMed  Google Scholar 

  58. Afrin A, Jayaraj A, Gayathri MS, Swamy Chinna Ayya, P. (2023) An overview of Schiff base-based fluorescent turn-on probes: a potential candidate for tracking live cell imaging of biologically active metal ions. Sens Diagn. https://doi.org/10.1039/D3SD00110E

    Article  Google Scholar 

  59. Alam MZ (2023) Alimuddin, Khan SA (2023) A Review on Schiff base as a versatile fluorescent chemo-sensors tool for detection of Cu2+ and Fe3+ metal Ion. J Fluoresc 33:1241–1272. https://doi.org/10.1007/s10895-022-03102-1

    Article  CAS  PubMed  Google Scholar 

  60. Goshisht MK, Patra GK, Tripathi N (2022) Fluorescent Schiff base sensors as a versatile tool for metal ion detection: strategies, mechanistic insights, and applications. Mater Adv 3:612–2669. https://doi.org/10.1039/d1ma01175h

    Article  CAS  Google Scholar 

  61. Baral M, Sahoo SK, Kanungo BK (2008) Tripodal amine catechol ligands: a fascinating class of chelators for aluminium(III). J Inorg Biochem 102:1581–1588. https://doi.org/10.1016/j.jinorgbio.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  62. Jali BR, Baruah JB (2014) Fluorescence properties, aluminium ion selective emission changes and self-assemblies of positional isomers of 4-(hydroxyphenylthio) naphthalene-1,2-diones. Dyes Pigm 110:56–66. https://doi.org/10.1016/j.dyepig.2014.05.023

    Article  CAS  Google Scholar 

  63. Anand T, Kumar A, Sahoo SK (2018) A new Al3+ selective fluorescent turn-on sensor based on hydrazide-naphthalic anhydride conjugate and its application in live cells imaging. Spectrochim Acta A Mol Biomol Spectrosc 204:105–112. https://doi.org/10.1016/j.saa.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  64. Das S, Dutta M, Das D (2013) Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects. Anal Methods 5:6262–6285. https://doi.org/10.1039/C3AY40982A

    Article  CAS  Google Scholar 

  65. Sahana A, Benerjee A, Lohar S, Banik A, Mukhopadhyay SK, Safin SD, Babashkina MG, Bolte M, Garcia Y, Das D (2013) FRET based tri-color emissive rhodamine-pyrene conjugate as an Al3+ selective colorimetric and fluorescence sensor for living cell imaging. Dalton Trans 42:13311–13314. https://doi.org/10.1039/C3DT51752G

    Article  CAS  PubMed  Google Scholar 

  66. Bhardwaj V, Bothra S, Upadhyay Y, Sahoo SK (2021) Cascade detection of pyridoxal 5′ -phosphate and Al3+ ions based on dual-functionalized red emitting copper nanoclusters. ACS Appl Nano Mater 4(6):6231–6238. https://doi.org/10.1021/acsanm.1c01019

    Article  CAS  Google Scholar 

  67. Alstand NEW, Kjelsberg BM, Vøllestad LA, Lydersen E, Poleo ABS (2021) The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.). Environ Pollut 133:333–342. https://doi.org/10.1016/j.envpol.2004.05.030

    Article  CAS  Google Scholar 

  68. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:5–321. https://doi.org/10.1104/pp.107.2.315

    Article  Google Scholar 

  69. Barcelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ Exp Bot 48:75–92. https://doi.org/10.1016/S0098-8472(02)00013-8

    Article  CAS  Google Scholar 

  70. Flaten TP, Odegard M (1988) Tea, aluminium and alzheimer’s disease. Food Chem Toxic 26:959–960

    Article  CAS  Google Scholar 

  71. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang YY, Wang F-X, Mu S-Y, Sun X, Li Q-Z, Xie C-Z, Liu H-B (2020) Highly selective and sensitive chemosensor for Al(III) based on isoquinoline Schiff base. Spectrochim Acta A Mol Biomol Spectrosc 243:118754. https://doi.org/10.1016/j.saa.2020.118754

    Article  CAS  PubMed  Google Scholar 

  73. Bharali B, Talukdar H, Phukan P, Das DK (2020) A New Schiff Base Based Fluorescent Sensor for Al(III) Based on 2-Hydroxyacetophenone and o-Phenylenediamine. Journal of Fluorescence. 30:751–757

    Article  CAS  PubMed  Google Scholar 

  74. Mu Y-I, Zhang C-J, Gao Z-I, Zhang X, Lu Q, Yao J-S, Xing S (2020) A highly selective colorimetric, absorption and fluorescence probe for Al3+ detection based on a new Schiff base compound. Synth Met 262:116334. https://doi.org/10.1016/j.synthmet.2020.116334

    Article  CAS  Google Scholar 

  75. Chen Y (2020) Microwave-assisted synthesis of a novel steroid-derived Schiff base chemosensor for detection of Al3+ in aqueous media. J Chem Res 44(11–12):750–755. https://doi.org/10.1177/1747519820914827

    Article  CAS  Google Scholar 

  76. Xu Y, Yang L, Wang H, Zhang Y, Yang X, Pei M, Zhang G (2020) A new “off-on-off” sensor for sequential detection of Al3+ and Cu2+ with excellent sensitivity and selectivity based on different sensing mechanisms. J Photochem Photobiol A Chem 391:112372

    Article  CAS  Google Scholar 

  77. Wang M, Lu L, Song W, Wang X, Sun T, Zhu J, Wang J (2021) AIE-active Schiff base compounds as fluorescent probe for the highly sensitive and selective detection of Al3+ ions. J Lumin 233:117911. https://doi.org/10.1016/j.jlumin.2021.117911

    Article  CAS  Google Scholar 

  78. Theetharappan M, Neelakantan MA (2021) A water-soluble Schiff Base turn-on fluorescent chemosensor for the detection of Al3+ and Zn2+ ions at the nanomolar level: Application in live-cell imaging. J Fluoresc 31:1277–1290

    Article  CAS  PubMed  Google Scholar 

  79. Kolcu F, Kaya İ (2022) Carbazole-based Schif base: A sensitive fluorescent ‘turn-on’ chemosensor for recognition of Al(III) ions in aqueous-alcohol media. Arab J Chem 15:103935

    Article  CAS  Google Scholar 

  80. Erdener D, Kaya İ (2022) Synthesis and characterization of a carbazole-based Schiff base capable of detection of Al3+ in organic/aqueous media. J Fluorescence 32:2097–2106

    Article  CAS  Google Scholar 

  81. Durai WA, Ramu A, Dhakshinamoorthy A (2020) A chromogenic and fluorescence turn-on sensor for the selective and sensitive recognition of Al3+ ions–A new approach by Schiff base derivative as probe. Inorg Chem Commun 121:108191. https://doi.org/10.1016/j.inoche.2020.108191

    Article  CAS  Google Scholar 

  82. Erdemir S, Malkondu S, Kararkurt S (2020) Synthesis and cell imaging studies of an unusual “OFF-ON” fluorescent sensor containing a triazole unit for Al3+ detection via selective imine hydrolysis. Analyst 145:3725–3731. https://doi.org/10.1039/c9an02500f

    Article  CAS  PubMed  Google Scholar 

  83. Xu LW, Wang XT, Zou YH, Yu XY, Xie CZ, Qiao X, Li QZ, Xu JY (2020) Novel 2-hydroxynaphthalene-based fluorescent turn-on sensor for highly sensitive and selective detection of Al3+ and its application in imaging in vitro and in vivo. Appl Organomet Chem 34:e5812. https://doi.org/10.1002/aoc.5812

    Article  CAS  Google Scholar 

  84. Peng H, Peng X, Huang J, Huang A, Xu S, Zhou J, Huang S, Cai X (2020) Synthesis and crystal structure of a novel pyridine acylhydrazone derivative as a “turn on” fluorescent probe for Al3+. J Mol Struct 1212:128138. https://doi.org/10.1016/j.molstruc.2020.128138

    Article  CAS  Google Scholar 

  85. Anu D, Naveen P, Rajamanikandan R, Kaveri MV (2021) Development of hydrazide based fluorescence probe for detection of Al3+ ions and application in live cell image. J Photochem Photobiol A 405:112921. https://doi.org/10.1016/j.jphotochem.2020.112921

    Article  CAS  Google Scholar 

  86. Aydin D, Dinckan S, Elmas SNK, Savran T, Arslan FN, Yilmaz I (2021) A novel phenolphthalein-based fluorescent sensor for Al3+ sensing in drinking water and herbal tea samples. Food Chem 337:127659. https://doi.org/10.1016/j.foodchem.2020.127659

    Article  CAS  PubMed  Google Scholar 

  87. Li R-Y, Wei Z-L, Wang L, Zhang Y, Ru J-X (2021) A new salamo-based fluorescence probe to visually detect aluminum(III) ion and bio-imaging in zebrafish. Microchem J 162:105720. https://doi.org/10.1016/j.microc.2020.105720

    Article  CAS  Google Scholar 

  88. Liu Y, Zhang L, Chen L, Liu Z, Liu C, Che G (2021) 2-Hydroxynaphthalene based acylhydrazone as a turn-on fluorescent chemosensor for Al3+ detection and its real sample applications. Spectrochim. Acta A Mol Biomol Spectrosc 248:119269. https://doi.org/10.1016/j.saa.2020.119269

    Article  CAS  PubMed  Google Scholar 

  89. Wang T, Pang Q, Tong Z, Wang M, Xiao N (2021) Selective sensing of PPi by fluorogenic Al(III)-probe complex in aqueous medium. Spectrochim Acta A Mol Biomol Spectrosc 250:119–249. https://doi.org/10.1016/j.saa.2020.119249

    Article  CAS  Google Scholar 

  90. Pan W, Zheng C, Liao G, Liu G, Pu S (2021) A H2O-induced fluorescence turn-on diarylethene derivative and its fluorescent sensing Al3+. Microchem J 163:105887. https://doi.org/10.1016/j.microc.2020.10588

    Article  CAS  Google Scholar 

  91. Peng H-N, Liu Y-Q, Huang J-Q, Huang S-S, Cai X-P, Xu S-J, Huang A, Zeng Q, Xu M (2021) A simple fluorescent probe for selective detection of Al3+ based on furan Schiff base and its crystal structure. J Mol Struct 1299:129866. https://doi.org/10.1016/j.molstruc.2020.129866

    Article  CAS  Google Scholar 

  92. Xu Y, Kong L, Bai L, Chen A, Li N, Cheng L, Liu W, Sun X, Tao F, Wang L, Li G (2021) A new water-soluble polymer fluorescent chemosensor with thiophene Schiff base site for selectively sensing Al3+ ions. Tetrahedron 79:131888. https://doi.org/10.1016/j.tet.2020.131888

    Article  CAS  Google Scholar 

  93. Xu H, Chen W, Ju L, Lu H (2021) A purine based fluorescent chemosensor for the selective and sole detection of Al3+ and its practical applications in test strips and bio-imaging. Spectrochim. Acta A Mol Biomol Spectrosc 247:119047. https://doi.org/10.1016/j.saa.2020.119074

    Article  CAS  Google Scholar 

  94. Zhang S, Wang Y, Xu H (2022) A new naphthalimide-picolinohydrazide derived fluorescent “turn-on” probe for hypersensitive detection of Al3+ ions and applications of real water analysis and bio-imaging. Spectrochimica Acta Part A Mol Bimol Spectroscopy 275:12119

    Google Scholar 

  95. Sidqi ME, Aziz AAA, Abolehasan AE, Sayed MA (2022) Photochemical processing potential of a novel Schiff base as a fluorescent probe for selective monitoring of Al3+ ions and bio-imaging in human cervical cancer HeLa cells. J Photochem Photobiol A Chem 424:113616

    Article  CAS  Google Scholar 

  96. Basu U, Roy M, Chakravarty AR (2020) Recent advances in the chemistry of iron-based chemotherapeutic agents. Coord Chem Rev 417:213339

    Article  CAS  Google Scholar 

  97. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  98. Danuta SK, Des RR (2015) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57:547–58

    Google Scholar 

  99. Shah K, Ain N, Ahmed F, Anis I, Shah MR (2017) A new highly selective chemosensor for the detection of iron ion in aqueous medium based on click generated triazole. Sens Actuators B 249:515–522

    Article  CAS  Google Scholar 

  100. Zhu X, Duan Y, Li P, Fan H, Han T, Huang X (2019) A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron (III), iron (II) and copper(ii) ions. Anal Methods 11:642–647

    Article  CAS  Google Scholar 

  101. Singh N, Mulrooney RC, Kaur N, Callan JF (2008) A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes. Chem Commun 40:4900–4902

    Article  Google Scholar 

  102. Seenan S, Iyer SK (2020) Colorimetric metal sensing of Fe3+ and Cr3+ and photophysical and electrochemical studies based on benzo[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate and its derivatives. J Org Chem 85(4):1871–1881

    Article  PubMed  Google Scholar 

  103. Theil EC, Goss DJ (2009) Living with Iron (and Oxygen): Questions and answers about iron homeostasis. Chem Rev 109:4568–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fan CH, Huang XM, Han LH, Lu ZL, Wang Z (2016) Novelcolorimetric and fluorescent off–on enantiomers with high selectivity for Fe3+ imaging in living cells. Sens Actuators B. 224:592–599. https://doi.org/10.1016/j.snb.2015.10.104

    Article  CAS  Google Scholar 

  105. Li XT, Yin Y, Deng JJ, Zhong HX, Tang J, Chen Z, Yang IT, Ma LJ (2016) A solvent-dependent fluorescent detection method for Fe(3+) and Hg(2+) based on a rhodamine B derivative. Talanta 154:329–334

    Article  CAS  PubMed  Google Scholar 

  106. Gong X, Ding X, Iang NJ, Zhong T, Wang G (2020) Benzothiazole-based fluorescence chemosensors for rapid recognition and “turn-off” fluorescence detection of Fe3+ ions in aqueous solution and in living cells. J Microc 152:104351. https://doi.org/10.1016/j.microc.2019.104351.9

    Article  CAS  Google Scholar 

  107. Yang YS, Liang C, Yang C, Zhang YP, Wang BX, Liu J (2020) A novel coumarin-derived acylhydrazone Schiff base gelator for synthesis of organogels and identification of Fe3+. Spectrochimica Acta Part A. 237:118391. https://doi.org/10.1016/j.saa.2020.118391

    Article  CAS  Google Scholar 

  108. Yin ZY, Hu JH, Gui K, Fu QQ, Yao Y, Zhou FL, Ma LL, Zhang ZP (2020) AIE based colorimetric and “turn-on” fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J Photochem Photobio A Chem 396:112542. https://doi.org/10.1016/j.jphotochem.2020.112542

    Article  CAS  Google Scholar 

  109. Ozdemir O (2021) A new 2-hydroxynaphthalene based Schiff base receptor for detection of Cu2+, Fe3+, HSO4−, CN− ions and D–amino acids in aqueous DMSO solution. J Mol Struc 1240:130532. https://doi.org/10.1016/j.molstruc.2021.130532

    Article  CAS  Google Scholar 

  110. Sawminathan S, Munusamy S, Manickam S, Jothi D, KulathuIyer S (2021) Azine based fluorescent rapid “off-on” chemosensor for detecting Th4+ and Fe3+ ions and its real-time application. Dyes Pig 196:109755. https://doi.org/10.1016/j.dyepig.2021.109755

    Article  CAS  Google Scholar 

  111. Çelik GG, Şenkuytu E, Şahin O, Serin S (2021) The new water-soluble Schiff base derivative fluorometric chemosensor with highly selective and instantly sensitivity for Fe3+ ion detection in aqueous media. Inorganica Chimica Acta 527:120556. https://doi.org/10.1016/j.ica.2021.120556

    Article  CAS  Google Scholar 

  112. Mertz W, Schwarz K (1955) Impaired intravenous glucose tolerance as an early sign of dietary necrotic liver degeneration. Arch Biochem Biophys 58:504–506

    Article  CAS  PubMed  Google Scholar 

  113. Vincent JB (2000) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutr Rev 58:67–72

    Article  CAS  PubMed  Google Scholar 

  114. Abreu PL, Cunha-Oliveira T, Ferreira LMR, Urbano AM (2018) Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells. Biometals 31:477–487

    Article  CAS  PubMed  Google Scholar 

  115. Heer M, Egert S (2015) Nutrients other than carbohydrates: their effects on glucose homeostasis in humans. Diabetes/Metab Res Rev 31(1):14–35

    Article  CAS  PubMed  Google Scholar 

  116. Terpiłowska S, Siwicki AK (2017) Chromium(III) and iron(III) inhibits replication of DNA and RNA viruses. Biometals 30:565–574

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751. https://doi.org/10.2337/diacare.27.11.2741

    Article  CAS  PubMed  Google Scholar 

  118. Dubey P, Thakur V, Chattopadhyay M (2020) Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 12:1–17. https://doi.org/10.3390/NU12061864

    Article  Google Scholar 

  119. Paul S, Manna A, Goswami S (2015) A differentially selective molecular probe for detection of trivalent ions (Al3+, Cr3+ and Fe3+) upon single excitation in mixed aqueous medium. Dalton Trans 44:11805–11810

    Article  CAS  PubMed  Google Scholar 

  120. Mahato P, Saha S, Suresh E, Di Liddo R, Parnigotto PP, Conconi MT, Kesharwani MK, Ganguly B, Das A (2012) Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe. Inorg Chem 51:1769–1777

    Article  CAS  PubMed  Google Scholar 

  121. Hu X, Zhang X, He G, He C, Duan C (2011) A FRET approach for luminescence sensing Cr3+ in aqueous solution and living cells through functionalizing glutathione and glucose moieties. Tetrahedron 67:1091–1095

    Article  CAS  Google Scholar 

  122. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  123. Raspor P, Batic M, Jamnik P, Josi´c, R. Milacic D, Pas M, Recek, V. Rezi´cDereani M, Skrt M (2000) The influence of chromium compounds on yeast physiology (a review). Acta Microbiol Immunol Hung 47:143–173

    Article  CAS  PubMed  Google Scholar 

  124. Langard S, Norseth T (eds) (1986) Handbook on Toxicology of Metal. Elsevier Sciences, Amsterdam

    Google Scholar 

  125. Karakus E (2020) An anthracene based fuorescent probe for the selective and sensitive detection of Chromium (III) ions in an aqueous medium and its practical application. Turk J Chem 44(4):941–949. https://doi.org/10.3906/kim-2003-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chandra R, Manna AK, Sahu M, Rout K, Patra GK (2020) Simple salicylaldimine functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorganica Chimica Acta 499:119192. https://doi.org/10.1016/j.ica.2019.119192

    Article  CAS  Google Scholar 

  127. Dhineshkumar E, Iyappan M, Anbuselvan C (2020) A novel dual chemosensor for selective heavy metal ions Al3+, Cr3+ and its applicable cytotoxic activity, HepG2 living cell images and theoretical studies. J Molec Struct 1210:128033

    Article  CAS  Google Scholar 

  128. Seenan S, Manickam S, Iyer SK (2021) A new furan based fluorescent chemosensor for the recognition of Cr3+ ion and its application in real sample analysis. J Photochem Photobiol A Chem 418:113441

    Article  CAS  Google Scholar 

  129. Hu T, Wang L, Li J, Zhao Y, Cheng J, Li W, Chang Z, Sun C (2021) A new fluorescent sensor L based on fluorene-naphthalene Schiff base for recognition of Al3+ and Cr3+. Inorganica Chimica Acta 524:120421. https://doi.org/10.1016/j.ica.2021.120421

    Article  CAS  Google Scholar 

  130. Tamizhselvi R, Napoleon AA (2022) Ninhydrin and isatin appended 2-Hydrazinobenzothiazole based simple Schiff bases for colorimetric selective detection of Cr3+ and Pb2+ ions. Inorganic Chem Comm 145:109983

    Article  CAS  Google Scholar 

  131. Yeldir EK, Erdener D, Kaya I (2022) Synthesis and characterization of a pyrene-based Schiff base and its oligomer: Investigation of fluorescent Cr3+ probe. Reactive Func Polym 170:105097. https://doi.org/10.1016/j.reactfunctpolym.2021.105097

    Article  CAS  Google Scholar 

  132. Musikavanhu B, Zhang Y, Zhu D, Xue Z, Yuan R, Wang S, Zhao L (2022) Turn-off detection of Cr(III) with chelation enhanced fluorescence quenching effect by a naphthyl hydrazone Shiff base chemosensor. Spectrochimica Acta A Molec Biomolec Spectro 281:121599. https://doi.org/10.1016/j.saa.2022.121599

    Article  CAS  Google Scholar 

Download references

Funding

There is no source of funding.

Author information

Authors and Affiliations

Authors

Contributions

The contributions of the authors are as follows. Dr. Qasim Ullah is involved in the conceptualization and manuscript preparation and drafting. Dr. Salman Ahmad Khan contributed in the form of drafting, proof reading of the manuscript. Dr. Mohammad Arifuddin is involved in the literature search and formatting of the manuscript. Md. Mohsin is involved in the collection and compiling of the data. Ms. Samrin Kausar is involved in the collection and compiling of the data and Mrs. Nahid Fatema is also involved in the collection and compiling of the data. Dr Mohammad Faraz Ahmer is involved in final drafting, proof reading and corrections etc. of the manuscript.

Corresponding author

Correspondence to Mohammad Faraz Ahmer.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, Q., Khan, S.A., Arifuddin, M. et al. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al3+, Fe3+ and Cr3+) Using Schiff Base Probes: At a Glance. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03514-7

Keywords

Navigation