Skip to main content
Log in

Photocatalytic Degradation of Dyes in Wastewater Using Solar Enhanced Nickel Oxide (NiO) Nanocatalysts Prepared by Chemical Methods

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This study examined the surface morphology and photocatalytic activity of nickel oxide (NiO) nanoparticles prepared through a chemical method. The synthesized nanoparticle was characterized by using spectroscopic and microscopic techniques. Photocatalytic degradation of hazardous Eriochrome Black T (EBT) was carried out using the synthesized nanoparticle and the efficiency of the NiO used was determined. Highest degradation efficiency of 70% at 25 mg loading was observed at 40 min exposure time. The study concluded that the synthesized nanoparticles could be used in industrial wastewater treatment containing organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Adapted from [56])

Fig. 7

Similar content being viewed by others

Data Availability

No shared data.

References

  1. Ighalo JO, Adeniyi AG, Adeniran JA, Ogunniyi S (2021) A systematic literature analysis of the nature and regional distribution of water pollution sources in Nigeria. J Clean Prod 283:124566

    Article  CAS  Google Scholar 

  2. Yulizar Y, Abdullah I, Surya RM, Alifa NL (2023) Green synthesis of novel YMnO3-doped TiO2 for enhanced visible-light-driven photocatalytic degradation of malachite green. J Environ Manag 342:118139

    Article  CAS  Google Scholar 

  3. De Giorgi MR, Cadoni E, Maricca D, Piras A (2000) Dyeing polyester fibres with disperse dyes in supercritical CO2. Dyes Pigm 45(1):75–79

    Article  Google Scholar 

  4. Halomoan I, Yulizar Y, Surya RM, Apriandanu DOB (2022) Facile preparation of CuO-Gd2Ti2O7 using Acmella uliginosa leaf extract for photocatalytic degradation of malachite green. Mater Res Bull 150:111726

    Article  CAS  Google Scholar 

  5. Kitchamsetti N, Ramteke MS, Rondiya SR, Mulani SR, Patil MS, Cross RW, ... Devan RS (2021) DFT and experimental investigations on the photocatalytic activities of NiOnanobelts for removal of organic pollutants. J Alloys Compd 855:157337

    Article  CAS  Google Scholar 

  6. Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ (2021) A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12(1):70–87

    Article  CAS  PubMed  Google Scholar 

  7. Vahini R, Kumar PS, Karuthapandian S (2016) Bandgap-tailored NiOnanospheres: an efficient photocatalyst for the degradation of crystal violet dye solution. Appl Phys A 122(8):1–8

    Article  CAS  Google Scholar 

  8. Khan NA, Saeed K, Khan I, Gul T, Sadiq M, Uddin A, Zekker I (2022) Efficient photodegradation of orange II dye by nickel oxide nanoparticles and nanoclay supported nickel oxide nanocomposite. Appl Water Sci 12(6):1–10

    Article  Google Scholar 

  9. Naderpour H, Noroozifar M, Khorasani-Motlagh M (2012) Photodegradation of methyl orange catalyzed by nanoscale zerovalent iron particles supported on natural zeolite. J Iran ChemSoc 10(3):471–479

    Article  Google Scholar 

  10. Apriandanu DOB, Nakayama S, Shibata K, Amano F (2023) Ti-doped Fe2O3 photoanodes on three-dimensional titanium microfiber felt substrate for photoelectrochemical oxygen evolution reaction. Electrochim Acta 456:142434

    Article  CAS  Google Scholar 

  11. Apriandanu DOB, Nomura S, Nakayama S, Tateishi C, Amano F (2023) Effect of two-step annealing on photoelectrochemical properties of hydrothermally prepared Ti-doped Fe2O3 films. Catal Today 411:113826

    Article  Google Scholar 

  12. Surya RM, Mauliddiyah S, Apriandanu B, Yulizar Y (2022) Synthesis of ZnO/SmMnO 3 in a hexane-water interface with increased photocatalytic malachite green degradation. Chemosphere 135125–135125

  13. Yulizar Y, Apriandanu DOB, Surya RM (2022) Fabrication of novel SnWO4/ZnO using Muntingia calabura L. leaf extract with enhanced photocatalytic methylene blue degradation under visible light irradiation. Ceram Int 48(3):3564–3577

    Article  Google Scholar 

  14. Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, Asiri M, A., … & Khan, S. B. (2019) Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr Pharm Des 25(34):3645–3663

    Article  CAS  PubMed  Google Scholar 

  15. Shanker U, Rani M, Jassal V (2017) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett 15(4):623–642

    Article  CAS  Google Scholar 

  16. Teow YH, Mohammad AW (2019) New generation nanomaterials for water desalination: A review. Desalination 451:2–17

    Article  CAS  Google Scholar 

  17. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487

    Article  CAS  PubMed  Google Scholar 

  18. Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z (2019) A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 11(8):1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mahat SB, Omar R, Idris A, Kamal SMM, Idris AIM (2018) Dynamic membrane applications in anaerobic and aerobic digestion for industrial wastewater: A mini review. Food Bioprod Process 112:150–168

    Article  CAS  Google Scholar 

  20. Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J Environ Manag 231:622–634

    Article  CAS  Google Scholar 

  21. Mansour F, Al-Hindi M, Yahfoufi R, Ayoub GM, Ahmad MN (2018) The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Rev Environ Sci Bio/Technol 17(1):109–145

    Article  CAS  Google Scholar 

  22. Reza KM, Kurny ASW, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO 2: a review. Appl Water Sci 7:1569–1578

    Article  CAS  Google Scholar 

  23. Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M (2021) Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 97:111–128

    Article  CAS  Google Scholar 

  24. Macedo LC, Zaia DAM, Moore GJ, de Santana H (2007) Degradation of leather dye on TiO2: a study of applied experimental parameters on photoelectrocatalysis. J Photochem Photobiol A 185(1):86–93

    Article  CAS  Google Scholar 

  25. Gao MJ, Wang XD, Guo M, Zhang M (2011) Contrast on COD photo-degradation in coking wastewater catalyzed by TiO2 and TiO2–TiO2 nanorod arrays. Catal Today 174(1):79–87

    Article  CAS  Google Scholar 

  26. Chan SHS, Yeong Wu, T., Juan, J. C., & Teh, C. Y. (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86(9):1130–1158

    Article  CAS  Google Scholar 

  27. Indriyani A, Yulizar Y, Yunarti RT, Apriandanu DOB, Surya RM (2021) One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation. Appl Surf Sci 563:150113

    Article  CAS  Google Scholar 

  28. Adekunle AS, Oyekunle JA, Durosinmi LM, Saheed O, Ajayeoba TA, Akinyele OF, ... Oluwafemi OS (2021) Comparative photocatalytic degradation of dyes in wastewater using solar enhanced iron oxide (Fe2O3) nanocatalysts prepared by chemical and microwave methods. Nano-Struct Nano-Objects 28:100804

    Article  CAS  Google Scholar 

  29. Sushma D, Richa S (2015) Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 4(10):103–106

    Google Scholar 

  30. Pranjali G, Deepa M, Nair ANB (2013) Nanotechnology in waste water treatment: a review. Int J ChemTech Res 5(5):2303–2308

    Google Scholar 

  31. Anand GT, Nithiyavathi R, Ramesh R, Sundaram SJ, Kaviyarasu K (2020) Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications. Surf Interfaces 18:100460

    Article  CAS  Google Scholar 

  32. Rajan PI, Vijaya JJ, Jesudoss SK, Kaviyarasu K, Kennedy LJ, Jothiramalingam R, ... Vaali-Mohammed MA (2017) Green-fuel-mediated synthesis of self-assembled NiOnano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains. Mater Re Express 4(8):085030

    Article  Google Scholar 

  33. Ezhilarasi AA, Vijaya JJ, Kennedy LJ, Kaviyarasu K (2020) Green mediated NiOnano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Mater Chem Phys 241:122419

    Article  CAS  Google Scholar 

  34. Fardood ST, Ramazani A, Moradi S (2017) A novel green synthesis of nickel oxide nanoparticles using Arabic gum. Chem J Mold 12(1):115–118

    Article  CAS  Google Scholar 

  35. Muthuchudarkodi RR, Merlinsathyasuganthi TM (2017) Green synthesis, characterizationsand photocatalytic applications of cerium doped nickel oxide nanoparticles assisted byalternantherasessilis. Int J Latest Trends Eng Technol 164–168

  36. Kaur J, Singhal S (2015) Highly robust light driven ZnO catalyst for the degradation of eriochrome black T at room temperature. Superlattices Microstruct 83:9–21

    Article  CAS  Google Scholar 

  37. Imran Din M, Rani A (2016) Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int J Anal Chem 2016

  38. Abbas H, Nadeem K, Hafeez A, Hassan A, Saeed N, Krenn H (2019) A comparative study of magnetic, photocatalytic and dielectric properties of NiO nanoparticles synthesized by sol-gel and composite hydroxide mediated method. Ceram Int 45(14):17289–17297

    Article  CAS  Google Scholar 

  39. Jayakumar G, Irudayaraj AA, Raj AD (2017) Photocatalytic degradation of methylene blue by nickel oxide nanoparticles. Mater Today: Proc 4(11):11690–11695

    Google Scholar 

  40. Roopan SM, Elango G, Priya DD, Asharani IV, Kishore B, Vinayprabhakar S, ... Acevedo R (2019) Sunlight mediated photocatalytic degradation of organic pollutants by statistical optimization of green synthesized NiO NPs as catalyst. J Mol Liq 293:111509

    Article  CAS  Google Scholar 

  41. Sun W, Xiao L, Wu X (2019) Facile synthesis of NiOnanocubes for photocatalysts and supercapacitor electrodes. J Alloy Compd 772:465–471

    Article  CAS  Google Scholar 

  42. Kant S, Pathania D, Singh P, Dhiman P, Kumar A (2014) Removal of malachite green and methylene blue by Fe0. 01Ni0. 01Zn0. 98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis. Appl Catal B 147:340–352

    Article  CAS  Google Scholar 

  43. Khan I, Saeed K, Zekker I et al (2022) Review on methylene blue: its properties, uses toxicity and photodegradation. Water 14:242

    Article  CAS  Google Scholar 

  44. El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16(6):1747–1752

    Article  CAS  Google Scholar 

  45. Haider AJ, Al-Anbari R, Sami HM, Haider MJ (2019) Enhance preparation and characterization of nickel-oxide as self-cleaning surfaces. Energy Procedia 157:1328–1342

    Article  CAS  Google Scholar 

  46. Lagashetty A, Havanoor V, Basavaraja S, Balaji SD, Venkataraman A (2007) Microwave-assisted route for synthesis of nanosized metal oxides. Sci Technol Adv Mater 8(6):484

    Article  CAS  Google Scholar 

  47. Fominykh K, Feckl JM, Sicklinger J, Döblinger M, Böcklein S, Ziegler J, ... Fattakhova-Rohlfing D (2014) Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv Funct Mater 24(21):3123–3129

    Article  CAS  Google Scholar 

  48. Sánchez-Vergara ME, Alonso-Huitron JC, Rodriguez-Gómez A, Reider-Burstin JN (2012) Determination of the optical GAP in thin films of amorphous dilithiumphthalocyanine using the Tauc and Cody models. Molecules 17(9):10000–10013

    Article  PubMed  PubMed Central  Google Scholar 

  49. Adachi S (2012) Optical properties of crystalline and amorphous semiconductors: Materials and fundamental principles. Springer Science & Business Media

  50. Kerli S, Soğuksu AK, Kavgacı M (2020) Production of nickel oxide nanostructure particles and their photocatalytic degradation of different organic dye. Int J Mod Phys B 34(09):2050081

    Article  CAS  Google Scholar 

  51. Akbari A, Sabouri Z, Hosseini HA, Hashemzadeh A, Khatami M, Darroudi M (2020) Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg Chem Commun 115:107867

    Article  CAS  Google Scholar 

  52. Khairnar SD, Shrivastava VS (2019) Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. J Taibah Univ Sci 13(1):1108–1118

    Article  Google Scholar 

  53. Durodola SS, Akeremale OK, Ore OT, Bayode AA, Badamasi H, Olusola JA (2023) A review on nanomaterial as photocatalysts for degradation of organic pollutants. J Fluoresc 1–14

  54. Hayat K, Gondal MA, Khaled MM, Ahmed S (2011) Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol–gel method. J Mol Catal A: Chem 336(1–2):64–71

    Article  CAS  Google Scholar 

  55. Devi LG, Kottam N, Murthy BN, Kumar SG (2010) Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J Mol Catal A: Chem 328(1–2):44–52

    Article  CAS  Google Scholar 

  56. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Adv 4(70):37003–37026

    Article  CAS  Google Scholar 

  57. Arularasu MV, Devakumar J, Rajendran TV (2018) An innovative approach for green synthesis of iron oxide nanoparticles: Characterization and its photocatalytic activity. Polyhedron 156:279–290

    Article  CAS  Google Scholar 

Download references

Funding

No fund received.

Author information

Authors and Affiliations

Authors

Contributions

Abolanle S. Adekunle, John A.O. Oyekunle, Bolaji C. Adegboyega, and Solomon S. Durodola were involved in Investigation, Methodology, Writing – review & editing. Lateefat M. Durosinmi, Winston O. Doherty, Mustapha O. Olayiwola, Temitope A. Ajayeoba, Olawale F. Akinyele, and Samuel O. Oluwafemi were involved in Writing, Review & editing.

Corresponding authors

Correspondence to Abolanle S. Adekunle, Solomon S. Durodola or Oluwatobi S. Oluwafemi.

Ethics declarations

Ethical Approval

Not Applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adekunle, A.S., Oyekunle, J.A.O., Durodola, S.S. et al. Photocatalytic Degradation of Dyes in Wastewater Using Solar Enhanced Nickel Oxide (NiO) Nanocatalysts Prepared by Chemical Methods. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03507-6

Keywords

Navigation