Skip to main content

Advertisement

Log in

Synthesis of Cu (II) and Zn (II) Complexes of a Quinoline Based Flexible Amide Receptor as Fluorescent Probe for Dihydrogen Phosphate and Hydrogen Sulphate and Their Antibacterial Activity

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel 8-hydroxy quinoline-derived amide receptor, in conjunction with its Cu (II) and Zn (II) complexes, has been strategically developed to function as remarkably efficient fluorescent receptors with a distinct capability for anion sensing. The comprehensive characterization of the synthesized compounds were achieved through UV-Vis, IR, NMR, and HRMS spectroscopic techniques. Among the Cu (II) and Zn (II) complexes, the latter exhibits superior selectivity for anions, specifically dihydrogen phosphate and hydrogen sulfate, as their tetrabutylammonium salts in a 9:1 acetonitrile-water (v/v) mixture. The Cu (II) complex demonstrates enhanced anion binding compared to the amide ligand, albeit with reduced selectivity. Furthermore, the affinity was evaluated using the Benesi-Hildebrand plot. The binding constants and Limit of Detection (LOD) for both complexes were precisely quantified. The Job plot illustrates a clear 1:1 binding interaction between the metal complexes and the guest anions. Significantly, both metal-complex receptors display a broad spectrum of antibacterial activity, against both gram-positive and gram-negative bacteria. It is worth highlighting that the Zn (II) complexed receptor outperforms the Cu (II) complexed receptor, as evidenced by its considerably lower Minimum Inhibitory Concentration (MIC) value against both bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Additional documents are included in supplementary material file. Electronic Supplementary Material associated with this article can be found in the online version of this paper (DOI: 10.1007/s10895-023-03416-8).

References

  1. Amendola V, Esteban-Gómez D, Fabbrizzi L, Licchelli M (2006) What anions do to N – H-containing receptors. Acc Chem Res 39:343–353

    Article  CAS  PubMed  Google Scholar 

  2. Beer PD, Gale PA (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed 40:486–516

    Article  CAS  Google Scholar 

  3. Bianchi A, Bowman-James K, García-España E (1997) VCH, Weinheim

  4. Brown A, Beer PD (2016) Halogen bonding anion recognition. Chem Commun 52:8645–8658

    Article  CAS  Google Scholar 

  5. Chen L, Berry SN, Wu X, Howe EN, Gale PA (2020) Advances in anion receptor chemistry. Chem 6:61–141

    Article  CAS  Google Scholar 

  6. Gale PA, Caltagirone C (2015) Anion sensing by small molecules and molecular ensembles. Chem Soc Rev 44:4212–4227

    Article  CAS  PubMed  Google Scholar 

  7. Gale PA, García-Garrido SE, Garric J (2008) Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem Soc Rev 37:151–190

    Article  CAS  PubMed  Google Scholar 

  8. Gale PA, Quesada R (2006) Anion coordination and anion-templated assembly: highlights from 2002 to 2004. Coord Chem Rev 250:3219–3244

    Article  CAS  Google Scholar 

  9. Hu Y et al (2021) Revisiting imidazolium receptors for the recognition of anions: highlighted research during 2010–2019. Chem Soc Rev 50:589–618

    Article  CAS  PubMed  Google Scholar 

  10. Ihm H, Yun S, Kim HG, Kim JK, Kim KS (2002) Tripodal nitro-imidazolium receptor for anion binding driven by (C – H)+---X-hydrogen bonds. Org Lett 4:2897–2900

    Article  CAS  PubMed  Google Scholar 

  11. Kim H, Kang J (2005) Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene. Tetrahedron Lett 46:5443–5445

    Article  CAS  Google Scholar 

  12. Kumar S, Luxami V, Kumar A (2008) Chromofluorescent probes for selective detection of fluoride and acetate ions. Org Lett 10:5549–5552

    Article  CAS  PubMed  Google Scholar 

  13. Lee GW, Singh N, Jang DO (2008) Benzimidazole and thiourea conjugated fluorescent hybrid receptor for selective recognition of PO43. Tetrahedron Lett 49:1952–1956

    Article  CAS  Google Scholar 

  14. Lu Q-S et al (2009) Imidazolium-functionalized BINOL as a multifunctional receptor for chromogenic and chiral anion recognition. Org Lett 11:669–672

    Article  CAS  PubMed  Google Scholar 

  15. Pancholi J, Beer PD (2020) Halogen bonding motifs for anion recognition. Coord Chem Rev 416:213281

    Article  CAS  Google Scholar 

  16. Saravanakumar D, Devaraj S, Iyyampillai S, Mohandoss K, Kandaswamy M (2008) Schiff’s base phenol–hydrazone derivatives as colorimetric chemosensors for fluoride ions. Tetrahedron Lett 49:127–132

    Article  CAS  Google Scholar 

  17. Sessler J, Gale P, Cho W (2006) Royal Society of Chemistry. Cambridge, UK

  18. Singh N, Jang DO (2007) Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensor for iodide in aqueous solution. Org Lett 9:1991–1994

    Article  CAS  PubMed  Google Scholar 

  19. Taylor MS (2020) Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding. Coord Chem Rev 413:213270

    Article  CAS  Google Scholar 

  20. Xie H, Yi S, Yang X, Wu S (1999) Study on host–guest complexation of anions based on a tripodal naphthylurea derivative. New J Chem 23:1105–1110

    Article  CAS  Google Scholar 

  21. Kaur N, Kumar S (2007) Single molecular colorimetric probe for simultaneous estimation of Cu2+ and Ni2+. Chem Commun 3069–3070

  22. Kaur N, Kumar S (2008) A differential receptor for selective and quantitative multi-ion analysis for Co2 + and Ni2+/Cu2+. Tetrahedron Lett 49:5067–5069

    Article  CAS  Google Scholar 

  23. Komatsu H et al (2005) Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging. J Am Chem Soc 127:10798–10799

    Article  CAS  PubMed  Google Scholar 

  24. Gale PA (2005) Amidopyrroles: from anion receptors to membrane transport agents. Chem Commun, 3761–3772

  25. Hirsch AK, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed 46:338–352

    Article  CAS  Google Scholar 

  26. Matthews SE, Beer PD (2005) Calixarene-based anion receptors. Supramol Chem 17:411–435

    Article  CAS  Google Scholar 

  27. Schmidtchen FP, Berger M (1997) Artificial organic host molecules for anions. Chem Rev 97:1609–1646

    Article  CAS  PubMed  Google Scholar 

  28. Wenzel M, Hiscock JR, Gale PA (2012) Anion receptor chemistry: highlights from 2010. Chem Soc Rev 41:480–520

    Article  CAS  PubMed  Google Scholar 

  29. Kim SK, Lee DH, Hong J-I, Yoon J (2009) Chemosensors for pyrophosphate. Acc Chem Res 42:23–31

    Article  CAS  PubMed  Google Scholar 

  30. Crook M, Swaminathan R (1996) The measurement of serum phosphate. Ann Clin Biochem 33:376–396

    Article  CAS  PubMed  Google Scholar 

  31. Furman PA et al (1986) Phosphorylation of 3’-azido-3’-deoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci 83:8333–8337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hansen NM, Felix R, Bisaz S, Fleisch H (1976) Aggregation of hydroxyapatite crystals. Biochim et Biophys Acta (BBA)-General Subj 451:549–559

    Article  CAS  Google Scholar 

  33. Jessen HJ, Blackburn GM (2017) Phosphate labeling and sensing in Chemical Biology. Springer

  34. Labande A, Astruc D (2000) Colloids as redox sensors: Recognition of H2PO4 – and HSO4 – by amidoferrocenylalkylthiol–gold nanoparticles. Chem Commun 12:1007–1008

  35. Nagaraj K, Shetty AN, Trivedi DR (2021) Recent advances in the fluorescent and colorimetric detection of dihydrogen phosphate. Supramol Chem 33:408–441

    Article  Google Scholar 

  36. Oh JH et al (2019) Synthesis and anion recognition features of a molecular cage containing both hydrogen bond donors and acceptors. Org Lett 21:4336–4339

    Article  CAS  PubMed  Google Scholar 

  37. Zhang D, Cochrane JR, Martinez A, Gao G (2014) Recent advances in H 2 PO 4 – fluorescent sensors. RSC Adv 4:29735–29749

    Article  CAS  Google Scholar 

  38. Ebbesen P (1972) DEAE-dextran and polybrene cation enhancement and dextran sulfate anion inhibition of immune cytolysis. J Immunol 109:1296–1299

    Article  CAS  PubMed  Google Scholar 

  39. Moyer BA et al (2006) Supramolecular chemistry of environmentally relevant anions. Adv Inorg Chem 59:175–204

    Google Scholar 

  40. Li J, Yin C, Huo F (2016) Development of fluorescent zinc chemosensors based on various fluorophores and their applications in zinc recognition. Dyes Pigm 131:100–133

    Article  CAS  Google Scholar 

  41. Kalendová A, Kalenda P, Veselý D (2006) Comparison of the efficiency of inorganic nonmetal pigments with zinc powder in anticorrosion paints. Prog Org Coat 57:1–10

    Article  Google Scholar 

  42. Lipscomb WN, Sträter N (1996) Recent advances in zinc enzymology. Chem Rev 96:2375–2434

    Article  CAS  PubMed  Google Scholar 

  43. Singh N, Jung HJ, Jang DO (2009) Cu (II) complex of a flexible tripodal receptor as a highly selective fluorescent probe for iodide. Tetrahedron Lett 50:71–74

    Article  CAS  Google Scholar 

  44. Vallee BL, Auld DS (1993) Zinc: biological functions and coordination motifs. Acc Chem Res 26:543–551

    Article  CAS  Google Scholar 

  45. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to zn 2 + and dual-mode ratiometric response to Al 3 + in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  46. Choi YW, You GR, Lee JJ, Kim C (2016) Turn-on fluorescent chemosensor for selective detection of Zn2 + in an aqueous solution: experimental and theoretical studies. Inorg Chem Commun 63:35–38

    Article  CAS  Google Scholar 

  47. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6

  48. Wołowiec M, Komorowska-Kaufman M, Pruss A, Rzepa G, Bajda T (2019) Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: a review. Minerals 9:487

    Article  Google Scholar 

  49. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521

    Article  CAS  Google Scholar 

  50. Taylor AA et al (2020) Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environ Manage 65:131–159

    Article  PubMed  Google Scholar 

  51. Barnham KJ, Masters CL, Bush (2004) A. I. neurodegenerative diseases and oxidative stress. Nat Rev Drug Discovery 3:205–214

    Article  CAS  PubMed  Google Scholar 

  52. Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans 13:1907–1917

  53. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  54. Millhauser GL (2004) Copper binding in the prion protein. Acc Chem Res 37:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. De Silva AP, Fox DB, Huxley AJ, Moody TS (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57

    Article  Google Scholar 

  56. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  57. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  58. Elkhatat AM et al (2021) Recent trends of copper detection in water samples. Bull Natl Res Centre 45:1–18

    Article  Google Scholar 

  59. Dorababu A (2021) Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm 354:2000232

    Article  CAS  Google Scholar 

  60. Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK (2017) Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 125:1300–1320

    Article  CAS  PubMed  Google Scholar 

  61. Sharma S, Singh S (2022) Synthetic routes to Quinoline-Based derivatives having potential Anti-Bacterial and Anti-Fungal Properties. Curr Org Chem 26:1453–1469

    Article  CAS  Google Scholar 

  62. Shen L et al (2006) Structure and total synthesis of aspernigerin: a novel cytotoxic endophyte metabolite. Chemistry–A Eur J 12:4393–4396

    Article  CAS  Google Scholar 

  63. Wei M-Y et al (2011) Isolation, structure elucidation, crystal structure, and biological activity of a marine natural alkaloid, viridicatol. Chem Nat Compd 47:322–325

    Article  CAS  Google Scholar 

  64. Wright AD, Goclik E, König GM, Kaminsky R (2002) Lepadins D – F: Antiplasmodial and Antitrypanosomal Decahydroquinoline derivatives from the Tropical Marine Tunicate Didemnum sp. J Med Chem 45:3067–3072

    Article  CAS  PubMed  Google Scholar 

  65. Côrte-Real L et al (2023) Cu (II) and Zn (II) Complexes of new 8-hydroxyquinoline schiff bases: investigating their structure, solution speciation, and anticancer potential. Inorg Chem 62:11466–11486

  66. Verma S, Lal S, Narang R, Sudhakar K (2023) Quinoline Hydrazide/Hydrazone derivatives: recent insights on antibacterial activity and mechanism of action. ChemMedChem 18:e202200571

    Article  CAS  PubMed  Google Scholar 

  67. Goswami S, Chakrabarty R (2009) Cu (II) complex of an abiotic receptor as highly selective fluorescent sensor for acetate. Tetrahedron Lett 50:5994–5997

    Article  CAS  Google Scholar 

  68. Mohamad NS et al (2021) The role of 8-amidoquinoline derivatives as fluorescent probes for zinc ion determination. Sensors 21:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amendola V et al (2001) Anion recognition by dimetallic cryptates. Coord Chem Rev 219:821–837

    Article  Google Scholar 

  70. Cabell LA et al (2001) Metal triggered fluorescence sensing of citrate using a synthetic receptor. J Chem Soc Perkin Trans 2:315–323

    Article  Google Scholar 

  71. Carvalho S, Delgado R, Drew MG, Félix V (2007) Dicopper (II) complexes of a new di-para-xylyldioxatetraazamacrocycle and cascade species with dicarboxylate anions: thermodynamics and structural properties. Dalton Trans 23:2431–2439

  72. Chen Z-h, He Y-b, Hu C-G, Huang X (2008) -h. Preparation of a metal–ligand fluorescent chemosensor and enantioselective recognition of carboxylate anions in aqueous solution. Tetrahedron: Asymmetry 19:2051–2057

    Article  CAS  Google Scholar 

  73. Leung D, Anslyn EV (2008) Transitioning enantioselective indicator displacement assays for α-amino acids to protocols amenable to high-throughput screening. J Am Chem Soc 130:12328–12333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Perez J, Riera L (2008) Stable metal–organic complexes as anion hosts. Chem Soc Rev 37:2658–2667

    Article  CAS  PubMed  Google Scholar 

  75. Ganesh V, Sanz MPC, Mareque-Rivas JC (2007) Effective anion sensing based on the ability of copper to affect electron transport across self-assembled monolayers. Chem Commun 47:5010–5012

  76. Tobey SL, Jones BD, Anslyn EV (2003) C 3 v symmetric receptors show high selectivity and high affinity for phosphate. J Am Chem Soc 125:4026–4027

    Article  CAS  PubMed  Google Scholar 

  77. Zhang T, Anslyn EV (2004) Molecular recognition and indicator-displacement assays for phosphoesters. Tetrahedron 60:11117–11124

    Article  CAS  Google Scholar 

  78. Fujioka H, Koike T, Yamada N, Kimura E (1996) A new bis (zinc (II)-cyclen) complex as a novel chelator for barbiturates and phosphates. Heterocycles 2:775–787

    Google Scholar 

  79. Kimura E, Aoki S, Koike T, Shiro M (1997) A tris (ZnII – 1, 4, 7, 10-tetraazacyclododecane) complex as a new receptor for phosphate dianions in aqueous solution. J Am Chem Soc 119:3068–3076

    Article  CAS  Google Scholar 

  80. Koike T, Kajitani S, Nakamura I, Kimura E, Shiro M (1995) The catalytic carboxyester hydrolysis by a new zinc (II) complex with an alcohol-pendant cyclen (1-(2-hydroxyethyl)-1, 4, 7, 10-tetraazacyclododecane): a novel model for indirect activation of the serine nucleophile by zinc (II) in zinc enzymes. J Am Chem Soc 117:1210–1219

    Article  CAS  Google Scholar 

  81. Konishi K, Yahara K, Toshishige H, Aida T, Inoue S (1994) A novel anion-binding chiral receptor based on a metalloporphyrin with molecular asymmetry. Highly enantioselective recognition of amino acid derivatives. J Am Chem Soc 116:1337–1344

    Article  CAS  Google Scholar 

  82. Mito-oka Y et al (2001) Zn (II) dipicolylamine-based artificial receptor as a new entry for surface recognition of α-helical peptides in aqueous solution. Tetrahedron Lett 42:7059–7062

    Article  CAS  Google Scholar 

  83. Ojida A, Miyahara Y, Kohira T, Hamachi I (2004) Recognition and fluorescence sensing of specific amino acid residue on protein surface using designed molecules. Pept Science: Original Res Biomolecules 76:177–184

    Article  CAS  Google Scholar 

  84. Veliscek Carolan J, Butler SJ, Jolliffe KA (2009) Selective anion binding in water with use of a zinc (II) dipicolylamino functionalized diketopiperazine scaffold. J Org Chem 74:2992–2996

    Article  Google Scholar 

  85. Benesi HA, Hildebrand J (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  86. Yang C, Liu L, Mu T-W, Guo Q-X (2000) The performance of the Benesi-Hildebrand method in measuring the binding constants of the cyclodextrin complexation. Anal Sci 16:537–539

    Article  CAS  Google Scholar 

  87. Yuan M et al (2007) A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule. Org Lett 9:2313–2316

    Article  CAS  PubMed  Google Scholar 

  88. Honnappa N, Anil AG, Shekar S, Behera SK, Ramamurthy PC (2022) Design of a highly selective benzimidazole-based derivative for optical and solid-state detection of zinc ion. Inorg Chem 61:15085–15097

    Article  CAS  PubMed  Google Scholar 

  89. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A

    CAS  Google Scholar 

  90. Ni X-l, Zeng X, Redshaw C, Yamato T (2011) Ratiometric fluorescent receptors for both Zn2 + and H2PO4–ions based on a pyrenyl-linked triazole-modified homooxacalix [3] arene: a potential molecular traffic signal with an RS latch logic circuit. J Org Chem 76:5696–5702

    Article  CAS  PubMed  Google Scholar 

  91. Perez C (1990) Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  92. Cheesbrough M (2005) District laboratory practice in tropical countries, part 2. Cambridge university press

  93. Pagning ALN et al (2016) New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities. Phytochem Lett 16:121–128

    Article  Google Scholar 

Download references

Funding

Financial support from University Grants Commission, India [UGC-BSR/Start-Up-Grant/2019–2020 (No. F. 30–515/2020(BSR), FD Diary No. 9718)] is gratefully acknowledged by MFH. SD acknowledges CSIR, New Delhi, India, for Senior Research Fellowship (SRF) [File No. 09/0285(11414)/2021-EMR-I]. AD acknowledges “State Fellowship (JRF)” having reference No. 530/R-2022 dated 22/08/2022.

Author information

Authors and Affiliations

Authors

Contributions

SD: Methodology, Formal analysis, Writing—Review and Editing. SG: Methodology, Formal analysis. AD: Formal analysis, Writing—Review and Editing. RNY: Writing—Review and Editing. RC: Conceptualization, Investigation, Formal Analysis, Writing—Original Draft, Validation. SP: Biological Investigation, Writing—Original Draft. DS: Biological Investigation, Validation. AKS: Writing—Review and Editing. MFH: Conceptualization, Investigation, Formal Analysis, Writing—Original Draft, Writing—Review and Editing, Validation, Funding.

Corresponding authors

Correspondence to Rinku Chakrabarty or Md. Firoj Hossain.

Ethics declarations

Ethics Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

A statement regarding informed consent is not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Ghosh, S., Das, A. et al. Synthesis of Cu (II) and Zn (II) Complexes of a Quinoline Based Flexible Amide Receptor as Fluorescent Probe for Dihydrogen Phosphate and Hydrogen Sulphate and Their Antibacterial Activity. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03416-8

Keywords

Navigation