Skip to main content
Log in

A Biophysical Study of Ru(II) Polypyridyl Complex, Properties and its Interaction with DNA

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP = 2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A = bpy = bipyridyl (1), phen = 1,10 Phenanthroline (2), dmb = 4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp = 4,4'-dimethyl-1,10 –Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO—LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram‐Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128. https://doi.org/10.1038/nrd3013

    Article  CAS  PubMed  Google Scholar 

  2. Blair JMA, Webber MA, Baylay AJ et al (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. https://doi.org/10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  3. Spellberg B, Blaser M, Guidos RJ et al (2011) Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. Clin Infect Dis 52:S397-428. https://doi.org/10.1093/cid/cir153

    Article  PubMed  Google Scholar 

  4. Boucher HW, Talbot GH, Bradley JS et al (2009) Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. https://doi.org/10.1086/595011

    Article  PubMed  Google Scholar 

  5. Rice LB (2008) Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J Infect Dis 197:1079–1081. https://doi.org/10.1086/533452

    Article  PubMed  Google Scholar 

  6. Walsh CT, Wencewicz TA (2014) Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo) 67:7–22. https://doi.org/10.1038/ja.2013.49

    Article  CAS  Google Scholar 

  7. World Health Organization. Antimicrobial resistance (2018) October 13, 2019. http://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 13 Sept 2021

  8. Antimicrobial resistance is rising in India, says ICMR report, Sep 5, 2021. https://timesofindia.indiatimes.com/city/mumbai/antimicrobial-resistance-is-rising-in-india-says-icmr-report/articleshow/85913195.cms. Accessed 14 Sept 2021

  9. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308. https://doi.org/10.1586/eri.13.12

    Article  CAS  PubMed  Google Scholar 

  10. De Oliveira DMP, Forde BM, Kidd TJ et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33:e00181-e219

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mjos KD, Orvig C (2014) Metallodrugs in Medicinal Inorganic Chemistry. Chem Rev 114:4540–4563. https://doi.org/10.1021/cr400460s

    Article  CAS  PubMed  Google Scholar 

  12. Byrne A, Burke CS, Keyes TE (2016) Precision targeted ruthenium( <scp>ii</scp> ) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chem Sci 7:6551–6562. https://doi.org/10.1039/C6SC02588A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franco MM, Andrea B, James DH, Marcel R, Stephen BH (2015) Platinum Antitumor Complexes: 50 Years Since Barnett Rosenberg’s Discovery. J Clin Oncol 33(35):4219–4226. https://doi.org/10.1200/JCO.2015.60.7481

    Article  CAS  Google Scholar 

  14. Fricker SP (2007) Metal based drugs: from serendipity to design. Dalt Trans 43:4903–4917. https://doi.org/10.1039/b705551j

    Article  CAS  Google Scholar 

  15. von AR Katrizky CW Rees (1984) Comprehensive Heterocyclic Chemistry. Herausgegeben Pergamon Press, Oxford, The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds

  16. Moucheron C (2009) From cisplatin to photoreactive Ru complexes: targeting DNA for biomedical applications. New J Chem 33:235–245. https://doi.org/10.1039/B817016A

    Article  CAS  Google Scholar 

  17. Gill MR, Garcia-Lara J, Foster SJ et al (2009) A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat Chem 1:662–667. https://doi.org/10.1038/nchem.406

    Article  CAS  PubMed  Google Scholar 

  18. Long EC (2009) Metal Complex−DNA Interactions. J Am Chem Soc 131:14124–14125. https://doi.org/10.1021/ja907261x

    Article  CAS  Google Scholar 

  19. Thota S, Rodrigues DA, Crans DC, Barreiro EJ (2018) Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J Med Chem 61:5805–5821. https://doi.org/10.1021/acs.jmedchem.7b01689

    Article  CAS  PubMed  Google Scholar 

  20. Gao F, Chao H, Zhou F et al (2006) DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2 ppd]2+. J Inorg Biochem 100:1487–1494. https://doi.org/10.1016/j.jinorgbio.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Vyas NA, Ramteke SN, Kumbhar AS et al (2016) Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors. Eur J Med Chem 121:793–802. https://doi.org/10.1016/j.ejmech.2016.06.038

    Article  CAS  PubMed  Google Scholar 

  22. Boerner LJ, Zaleski JM (2005) Metal complex–DNA interactions: from transcription inhibition to photoactivated cleavage. Curr Opin Chem Biol 9:135–144. https://doi.org/10.1016/j.cbpa.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  23. Gupta RK, Pandey R, Sharma G et al (2013) DNA Binding and Anti-Cancer Activity of Redox-Active Heteroleptic Piano-Stool Ru(II), Rh(III), and Ir(III) Complexes Containing 4-(2-Methoxypyridyl)phenyldipyrromethene. Inorg Chem 52:3687–3698. https://doi.org/10.1021/ic302196v

    Article  CAS  PubMed  Google Scholar 

  24. Coury JE, Anderson JR, McFail-Isom L et al (1997) Scanning Force Microscopy of Small Ligand−Nucleic Acid Complexes: Tris( o -phenanthroline)ruthenium(II) as a Test for a New Assay. J Am Chem Soc 119:3792–3796. https://doi.org/10.1021/ja9623774

    Article  CAS  Google Scholar 

  25. Cook NP, Torres V, Jain D, Martí AA (2011) Sensing Amyloid-β Aggregation Using Luminescent Dipyridophenazine Ruthenium(II) Complexes. J Am Chem Soc 133:11121–11123. https://doi.org/10.1021/ja204656r

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Mei WJ, Lin LJ et al (2004) Electronic effects on the interactions of complexes [Ru(phen)2(p-L)]2+ (L=MOPIP, HPIP, and NPIP) with DNA. Inorganica Chim Acta 357:285–293. https://doi.org/10.1016/S0020-1693(03)00478-X

    Article  CAS  Google Scholar 

  27. Trondl R, Heffeter P, Kowol CR et al (2014) NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci 5:2925–2932. https://doi.org/10.1039/C3SC53243G

    Article  CAS  Google Scholar 

  28. Blazevic A, Hummer AA, Heffeter P et al (2017) Electronic State of Sodium trans-[Tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339) in Tumor, Liver and Kidney Tissue of a SW480-bearing Mouse. Sci Rep 7:40966. https://doi.org/10.1038/srep40966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR (2015) Metal complex interactions with DNA. Dalt Trans 44:3505–3526. https://doi.org/10.1039/C4DT02700K

    Article  CAS  Google Scholar 

  30. Comba P, Morgen M, Wadepohl H (2013) Tuning of the Properties of Transition-Metal Bispidine Complexes by Variation of the Basicity of the Aromatic Donor Groups. Inorg Chem 52(11):6481–6501. https://doi.org/10.1021/ic4004214

    Article  CAS  PubMed  Google Scholar 

  31. Comba P (2021) 'Modeling of Molecular Properties' In: Comprehensive Coordination Chemistry 3. Comba (ed), Elsevier, Wiley-VCH 107–121

  32. Araya G, Benites J, Reyes JS, Marcoleta AE, Valderrama JA, Lagos R, Monasterio O (2019) Inhibition of Escherichia coli and Bacillus subtilis FtsZ Polymerization and Bacillus subtilis Growth by Dihydroxynaphtyl Aryl Ketones. Front Microbiol 10:1225. https://doi.org/10.3389/fmicb.2019.01225

  33. Salvà-Serra F, Gomila M, Svensson-Stadler L, Busquets A, Jaén-Luchoro D, Karlsson R, Moore ER (2018) A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. Protocol Exchange. https://doi.org/10.1038/protex.2018.084

  34. Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair B (2000) Interaction of DNA with [Cr(Shiff base)(H2O)2]ClO4. Biochim Biophys Acta 1475:157−162. https://doi.org/10.1016/S0304-4165(00)00063-5

  35. Zheng RH, Guo HC, Jiang HJ, Xu KH, Liu BB, Sun WL, Shen ZQ (2010) A new and convenient synthesis of phendiones oxidated by KBr O3/H2SO4 at room temperature. Chinese Chem Lett 21(11):1270–1272. https://doi.org/10.1016/j.cclet.2010.05.030

    Article  CAS  Google Scholar 

  36. Goss CA, Abruna HD (1985) Spectral, electrochemical and electrocatalytic properties of 1,10-phenanthroline-5,6-dione complexes of transition metals. Inorg Chem 24(25):4263–4267. https://doi.org/10.1021/ic00219a012

    Article  CAS  Google Scholar 

  37. Mohammad S, Ali R, Syed SR, Priyanka S, Ramesh CG, Sushil KD, Arvind M (2016) Design and Synthesis of Some Imidazolyl Derivatives: Photophysical Studies and Application in the Detection of Anions. Open Chem J 3:35–51. https://doi.org/10.2174/1874842201603010035

    Article  Google Scholar 

  38. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396. https://doi.org/10.1021/bi00394a013

    Article  CAS  PubMed  Google Scholar 

  39. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489. https://doi.org/10.1016/0022-2836(74)90031-X

    Article  CAS  PubMed  Google Scholar 

  40. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry 32:2573–2584. https://doi.org/10.1021/bi00061a015

    Article  CAS  PubMed  Google Scholar 

  41. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither.DELTA.- nor.LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324. https://doi.org/10.1021/bi00154a001

    Article  CAS  PubMed  Google Scholar 

  42. Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23(9):271–273. https://doi.org/10.1021/ar00177a001

    Article  CAS  Google Scholar 

  43. Barton JK, Raphael AL (1984) Photoactivated stereospecific cleavage of double-helical DNA by cobalt(III) complexes. J Am Chem Soc 106:2466–2468. https://doi.org/10.1021/ja00320a058

    Article  CAS  Google Scholar 

  44. Anupama B, Aruna A, Manga V et al (2017) Synthesis, Spectral Characterization, DNA/ Protein Binding, DNA Cleavage, Cytotoxicity, Antioxidative and Molecular Docking Studies of Cu(II)Complexes Containing Schiff Base-bpy/Phen Ligands. J Fluoresc 27:953–965. https://doi.org/10.1007/s10895-017-2030-5

    Article  CAS  PubMed  Google Scholar 

  45. Comba P, Dovalil N, Hanson GR et al (2014) Insights into the Electronic Structure of Cu II Bound to an Imidazole Analogue of Westiellamide. Inorg Chem 53:12323–12336. https://doi.org/10.1021/ic5014413

    Article  CAS  PubMed  Google Scholar 

  46. Bosch S, Comba P, Gahan LR et al (2015) Selective Coordination of Gallium(III), Zinc(II), and Copper(II) by an Asymmetric Dinucleating Ligand: A Model for Metallophosphatases. Chem - A Eur J 21:18269–18279. https://doi.org/10.1002/chem.201503348

    Article  CAS  Google Scholar 

  47. Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B (2020) Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. United States: Chemical Rev 120:13. https://doi.org/10.1021/acs.chemrev.9b00496

  48. Bursch M, Hansen A, Pracht P, Kohn J, Grimme S (2020) Theoretical study of conformational energies of transition metal complexes. Phys Chem Phys 23.  https://doi.org/10.1039/D0CP04696E

  49. Computational Chemistry Software (2003) Hyperchem 7.5 Evaluation. Hypercube, Inc

  50. Reddy MR, Reddy PV, Kumar YP et al (2014) Synthesis, Characterization, DNA Binding, Light Switch “On and Off”, Docking Studies and Cytotoxicity, of Ruthenium(II) and Cobalt(III) Polypyridyl Complexes. J Fluoresc 24:803–817. https://doi.org/10.1007/s10895-014-1355-6

    Article  CAS  PubMed  Google Scholar 

  51. Nambigari N, Dulapalli R, Mustyala KK et al (2013) Molecular dynamic simulations of Co(III) and Ru(II) polypyridyl complexes and docking studies with dsDNA. Med Chem Res 22:5557–5565. https://doi.org/10.1007/s00044-013-0540-5

    Article  CAS  Google Scholar 

  52. Grippo L, Lucidi S (1997) A globally convergent version of the Polak-Ribière conjugate gradient method. Math Program 78:375–391. https://doi.org/10.1007/BF02614362

    Article  Google Scholar 

  53. Howard A, McIver J (1994) HyperChem Computational Chemistry. Hypercube Inc., Waterloo

    Google Scholar 

  54. El-Ghamaz NA, Diab MA, El-Bindary AA et al (2014) Geometrical structure and optical properties of antipyrine Schiff base derivatives. Mater Sci Semicond Process 27:521–531. https://doi.org/10.1016/j.mssp.2014.07.022

    Article  CAS  Google Scholar 

  55. El-Sonbati AZ, Diab MA, El-Bindary AA, Morgan SM (2014) Supramolecular spectroscopic and thermal studies of azodye complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 127:310–328. https://doi.org/10.1016/j.saa.2014.02.037

    Article  CAS  Google Scholar 

  56. El-Sonbati AZ, Diab MA, El-Bindary AA et al (2016) Molecular docking, DNA binding, thermal studies and antimicrobial activities of Schiff base complexes. J Mol Liq 218:434–456. https://doi.org/10.1016/j.molliq.2016.02.072

    Article  CAS  Google Scholar 

  57. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. https://doi.org/10.1093/nar/gki481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Drew WL, Barry AL, O’Toole R, Sherris JC (1972) Reliability of the Kirby-Bauer Disc Diffusion Method for Detecting Methicillin-Resistant Strains of Staphylococcus aureus. Appl Microbiol 24:240–247. https://doi.org/10.1128/AEM.24.2.240-247.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. El-Ajaily MM, Abdlseed FA, Ben-Gweirif S (2007) Preparation, characterization and antibacterial activity of some metal ion complexes. E-Journal Chem 4. https://doi.org/10.1155/2007/636290

  60. Srishailam A, Kumar YP, Venkat Reddy P et al (2014) Cellular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium(II) polypyridyl complexes. J Photochem Photobiol B Biol 132:111–123. https://doi.org/10.1016/j.jphotobiol.2014.02.003

    Article  CAS  Google Scholar 

  61. Lepecq J-B, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. J Mol Biol 27:87–106. https://doi.org/10.1016/0022-2836(67)90353-1

    Article  CAS  PubMed  Google Scholar 

  62. Vuradi RK, Avudoddi S, Putta VR et al (2017) Synthesis, Characterization and Luminescence Sensitivity with Variance in pH, DNA and BSA Binding Studies of Ru(II) Polypyridyl Complexes. J Fluoresc 27:939–952. https://doi.org/10.1007/s10895-017-2029-y

    Article  CAS  PubMed  Google Scholar 

  63. Vuradi RK, Nambigari N, Pendyala P et al (2020) Study of Anti-Apoptotic mechanism of Ruthenium (II)Polypyridyl Complexes via RT-PCR and DNA binding. Appl Organomet Chem 34:e5332. https://doi.org/10.1002/aoc.5332

    Article  CAS  Google Scholar 

  64. Chaires JB (1997) Energetics of drug–DNA interactions. Biopolymers 44:201–215. https://doi.org/10.1002/(SICI)1097-0282(1997)44:3%3c201::AID-BIP2%3e3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  65. Hay BP (1993) Methods for molecular mechanics modeling of coordination compounds. Coord Chem Rev 126:111–236. https://doi.org/10.1016/0010-8545(93)85036-4

    Article  Google Scholar 

  66. Fukui K (1982) Role of Frontier Orbitals in Chemical Reactions. Science (80- ) 218:747–754. https://doi.org/10.1126/science.218.4574.747

  67. Mashiach E, Schneidman-Duhovny D, Andrusier N et al (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36:W229–W232. https://doi.org/10.1093/nar/gkn186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taqui Khan B, Annapoorna K (1990) Mixed ligand complexes of ruthenium(III)edta with pyrimidines. Inorganica Chim Acta 171(2):157–163. https://doi.org/10.1016/S0020-1693(00)80426-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors AK and NN are thankful to The Head, Department of Chemistry and the Principal, University College of Science, Saifabad, Osmania University, Hyderabad for the facilities to carry out this work.

Funding

No financial support from any agency.

Author information

Authors and Affiliations

Authors

Contributions

Navaneetha Nambigari:"Data curation, Conceptualization; Funding acquisition; Methodology; Project administration; Resources; Software; Supervision; Original draft writing, review & editing" Aruna Kodipaka: "Data curation, Formal analysis, Investigation; Validation; Visualization; "., Ravi Kumar Vuradi: Data Interpretation. Praveen Kumar Airva: Biological data curation. Satyanarayana Sirasani: Roles/Writing – original draft Writing.

Corresponding authors

Correspondence to Navaneetha Nambigari or Satyanarayana Sirasani.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not applicable.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 453 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nambigari, N., Kodipaka, A., Vuradi, R.K. et al. A Biophysical Study of Ru(II) Polypyridyl Complex, Properties and its Interaction with DNA. J Fluoresc 32, 1211–1228 (2022). https://doi.org/10.1007/s10895-021-02879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02879-x

Keywords

Navigation