Skip to main content
Log in

Aggregation‐induced Emission Properties of Triphenylamine Chalcone Compounds

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two triphenylamine chalcone derivatives 1 and 2 were synthesized through the Vilsmeier-Haack reaction and Claisen-Schmidt condensation reaction. Through ultraviolet absorption spectroscopy and fluorescence emission spectroscopy experiments, it was confirmed that these two compounds exhibited good aggregation-induced emission (AIE) behavior in ethanol/water mixtures. The solvent effect test showed with the increase of the orientation polarizability of the solvent, the Stokes shift in the solvent of compound 1 and compound 2 shows a linear change trend. Through solid state fluorescence test and universal density function theory (DFT), the existence of π-π stacking interaction in the solid state of the compound has been studied, resulting in weak fluorescence emission. pH has no effect on the fluorescence intensity of the aggregate state of excited state intramolecular proton transfer (ESIPT) molecules in an acidic environment, but greatly weakens its fluorescence intensity in an alkaline environment. Cyclic voltammetry (CV) test shows that compound 1 was more prone to oxidation reaction than compound 2. The results of thermal stability test show that the thermal stability of compound 1 was better than that of compound 2, indicating that triphenylamine chalcone derivatives can improve the thermal stability of compounds by increasing the number of branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The 1 H NMR, 13 C NMR HR-ESI-Ms of the 1 and 2 are detailed in the Supporting information. These materials are available free of charge via the Internet.

Code Availability

Not applicable.

References

  1. Xie Z, Chen C, Xu S, Li J, Zhang Y, Liu S, Xu J, Chi Z (2015) White-light emission strategy of a single organic compound with aggregation‐induced emission and delayed fluorescence properties. Angew Chem Int Ed 127(24):7287–7290

    Article  Google Scholar 

  2. Sun J, Lu Y, Wang L, Cheng D, Sun Y, Zeng X (2013) Fluorescence turn-on detection of DNA based on the aggregation-induced emission of conjugated poly (pyridinium salt) s. Polym Chem 4(14):4045–4051

    Article  CAS  Google Scholar 

  3. Huang J, Jiang Y, Yang J, Tang R, Xie N, Li Q, Li Z (2014) Construction of efficient blue AIE emitters with triphenylamine and TPE moieties for non-doped OLEDs. J Mater Chem C 2(11):2028–2036

    Article  CAS  Google Scholar 

  4. Liu M, Zhang X, Yang B, Liu L, Deng F, Zhang X, Wei Y (2014) Polylysine crosslinked AIE dye based fluorescent organic nanoparticles for biological imaging applications. Macromol Biosci 14(9):1260–1267

    Article  CAS  PubMed  Google Scholar 

  5. Jiang R, Cao M, Liu M, Liu L, Huang Q, Huang H, Wei Y (2018) AIE-active self-assemblies from a catalyst-free thiol-yne click reaction and their utilization for biological imaging. Mater Sci Eng C 92:61–68

    Article  CAS  Google Scholar 

  6. Niu G, Zhang R, Shi X, Park H, Xie S, Kwok RT, Tang BZ (2020) AIE luminogens as fluorescent bioprobes. TrAC Trend Anal Chem 123:115769

    Article  CAS  Google Scholar 

  7. Mohan M, James J, Satyanarayan MN, Trivedi DR (2019) Functionalized pyrene-based AIEgens: synthesis, photophysical characterization and density functional theory studies. Lumin 34:715–723

    Article  CAS  Google Scholar 

  8. Yang W, Li C, Zhang M, Zhou W, Xue R, Liu H, Li Y (2016) Aggregation-induced emission and intermolecular charge transfer effect in triphenylamine fluorophores containing diphenylhydrazone structures. Phys Chem Chem Phys 18(40):28052–28060

    Article  CAS  PubMed  Google Scholar 

  9. Mathivanan M, Tharmalingam B, Lin CH, Pandiyan BV, Thiagarajan V, Murugesapandian B (2020) ESIPT-active multi-color aggregation-induced emission features of triphenylamine–salicylaldehyde-based unsymmetrical azine family. Cryst Eng Comm 22(2):213–228

    Article  CAS  Google Scholar 

  10. Felouat A, Curtil M, Massue J, Ulrich G (2019) Excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2′-hydroxybenzofuranyl) benzoxazole (HBBO) scaffold functionalised with oligo (ethylene glycol)(OEG) chains. New J Chem 43(23):9162–9169

    Article  CAS  Google Scholar 

  11. Zhou J, Shi R, Liu J, Wang R, Xu Y, Qian X (2015) An ESIPT-based fluorescent probe for sensitive detection of hydrazine in aqueous solution. Org Biomol Chem 13(19):5344–5348

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Ma Y, Yang Y, Shi W, Lan R, Guo Q (2018) Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process. Chem Chem Phys 20(6):4208–4215

    Article  CAS  Google Scholar 

  13. Zhang H, Qu Y, Gao Y, Hua J, Li J, Li B (2013) A red fluorescent ‘turn-on’chemosensor for Hg2+ based on triphenylamine–triazines derivatives with aggregation-induced emission characteristics. Tetrahedron Lett 54(8):909–912

    Article  CAS  Google Scholar 

  14. Dumat B, Faurel-Paul E, Fornarelli P, Saettel N, Metgé G, Fiorini-Debuisschert C, Teulade-Fichou MP (2016) Influence of the oxazole ring connection on the fluorescence of oxazoyl-triphenylamine biphotonic DNA probes. Org Biomol Chem 14(1):358–370

    Article  CAS  PubMed  Google Scholar 

  15. Li Q, Wang Z, Song W, Ma H, Dong J, Quan YY, Huang ZS (2019) A novel D-π-A triphenylamine-based turn-on colorimetric and ratiometric fluorescence probe for cyanide detection. Dye Pigment 161:389–395

    Article  CAS  Google Scholar 

  16. Yin J, Peng M, Ma Y, Guo R, Lin W (2018) Rational design of a lipid-droplet-polarity based fluorescent probe for potential cancer diagnosis. Chem Commun 54(85):12093–12096

    Article  CAS  Google Scholar 

  17. Kong L, Yang J, Zhou H, Li S, Hao F, Zhang Q, Tian Y (2013) Synthesis, photophysical properties and TD-DFT calculation of four two-photon absorbing triphenylamine derivatives. Science China Chem 56(1):106–116

    Article  CAS  Google Scholar 

  18. Wang Y, Yang C, Li B, Shi F, Gao Y, Wang Z, Peng H (2018) Solvent dependent ultrafast dynamics of multi-branched thiophene-based triphenylamine derivatives with a triazine core. Optik 167:80–87

    Article  CAS  Google Scholar 

  19. Yang M, Xu D, Xi W, Wang L, Zheng J, Huang J, Tian Y (2013) Aggregation-induced fluorescence behavior of triphenylamine-based schiff bases: the combined effect of multiple forces. Org Chem 78(20):10344–10359

    Article  CAS  Google Scholar 

  20. Zhang M, Yang W, Gong T, Zhou W, Xue R (2017) Tunable AIEE fluorescence constructed from a triphenylamine luminogen containing quinoline–application in a reversible and tunable pH sensor. Phys Chem Chem Phys 19(32):21672–21682

    Article  CAS  PubMed  Google Scholar 

  21. Usuki T, Shimada M, Yamanoi Y, Ohto T, Tada H, Kasai H, Nishihara H (2018) Aggregation-induced emission enhancement from disilane-bridged donor–acceptor–donor luminogens based on the triarylamine functionality. ACS Appl Mater Interfaces 10(15):12164–12172

    Article  CAS  PubMed  Google Scholar 

  22. Niu G, Zheng X, Zhao Z, Zhang H, Wang J, He X, Tang BZ (2019) AIE-Active Functionalized acrylonitriles with aggregation-induced emission: structure tuning by simple reaction-condition variation, efficient red emission, and two-photon bioimaging. J Am Chem Soc 141(38):15111–15120

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Ding G, Duan Y, Zhu Y, Zhu G, Wang M, Li X, Zhang Y, Qin X, Hung CH (2020) A novel triphenylamine-based bis-Schiff bases fluorophores with AIE-Activity as the hydrazine fluorescence turn-off probes and cell imaging in live cells. Talanta 217:121029

    Article  CAS  PubMed  Google Scholar 

  24. Cheng Hr, Ji Y, Liu F, Lu Xj (2019) Rapid and visual detection for hypochlorite of an AIE enhanced fluorescence probe. Lumin 34:903

    Article  CAS  Google Scholar 

  25. Satam MA, Telore RD, Sekar N (2014) Photophysical properties of Schiff’s bases from 3-(1, 3-benzothiazol-2-yl)-2-hydroxy naphthalene-1-carbaldehyde. Spectrochimica Acta Part a-Molecular Biomolecular Spectroscopy 132:678–686

    Article  CAS  Google Scholar 

  26. Matsumoto H, Ikedu S, Tosaka T, Nishimura Y, Arai T (2018) Kinetic analysis of tautomer forms of aromatic-urea compounds with acetate ions: solvent effect of excited state intermolecular proton transfer. Photochem Photobiol Sci 17:561–569

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Yang Y, Zhao Y, Liu S, Li Y (2019) Effect of solvent environment on excited state intramolecular proton transfer in 2-(4-(dimethylamino) phenyl)-3-hydroxy-6,7-dimethoxy-4 h-chromen-4-one. PhysChem Chem Phys 21(32):17711–17719

    CAS  Google Scholar 

  28. Qi Y, Lu M, Wang Y, Tang Z, Gao Z, Tian J, Liu J (2019) A theoretical study of the ESIPT mechanism of 3-hydroxyflavone derivatives: solvation effect and the importance of TICT for its dual fluorescence properties. Org Chem Front 6(17):3136–3143

    Article  CAS  Google Scholar 

  29. Ding S, Xu A, Sun A, Xia Y, Liu Y (2021) Substituent effect on ESIPT and hydrogen bond mechanism of N-(8-Quinolyl) salicylaldimine: A detailed theoretical exploration. Spectrochim Acta Part A Mol Biomol Spectrosc 245:118937

    Article  CAS  Google Scholar 

  30. Ni M, Su S, Fang H (2020) Substituent control of photophysical properties for excited-state intramolecular proton transfer (ESIPT) of o-LHBDI derivatives: a TD-DFT investigation. J Mol Model 26(5):1–10

    Article  Google Scholar 

  31. Chrayteh A, Ewels C, Jacquemin D (2020) Dual fluorescence in strap ESIPT systems: a theoretical study. Phys Chem Chem Phys 22(2):854–863

    Article  CAS  PubMed  Google Scholar 

  32. Zhang N, Liu G, Yan J, Zhang T, Liu X (2020) Naked diazaborepin dyes: Synthesis, photophysical properties, substituent effects and theoretical calculations on ESIPT process. Dye Pigment 175:108218

    Article  Google Scholar 

  33. Yan L, Qing T, Li R, Wang Z, Qi Z (2016) Synthesis and optical properties of aggregation-induced emission (AIE) molecules based on the ESIPT mechanism as pH- and Zn2+-responsive fluorescent sensors. RSC Adv 6(68):63874

    Article  CAS  Google Scholar 

  34. Zhu H, Huang J, Kong L, Tian Y, Yang J (2018) Branched triphenylamine luminophores: aggregation-induced fluorescence emission, and tunable near-infrared solid-state fluorescence characteristics via external mechanical stimuli. Dye Pigment 151:140–148

    Article  CAS  Google Scholar 

  35. Jin H, Li X, Tan T, Wang S, Xiao Y, Tian J (2014) Electrochromic properties of novel chalcones containing triphenylamine moiety. Dye Pigment 106:154–160

    Article  CAS  Google Scholar 

  36. Bozkurt E, Gul HI, Mete E (2018) Solvent and substituent effect on the photophysical properties of pyrazoline derivatives: A spectroscopic study. J Photochem Photobiol A chem 352:35–42

    Article  CAS  Google Scholar 

  37. Satam MA, Telore RD, Tathe AB, Gupta VD, Sekar N (2014) A combined theoretical and experimental investigation on the solvatochromism of ESIPT3-(1, 3-benzothiazol-2-yl)-2-hydroxynaphthalene-1-carbaldehyde. Spectrochim Acta Part A Mol Biomol Spectrosc 127:16–24

    Article  CAS  Google Scholar 

  38. Feng Q, Li Y, Li K, Lu J, Wang J, Fan P, Hou H (2017) Fluorescent chemosensor for zinc ion detection with significant emission color change in aqueous solution based on AIEgen. ChemistrySelect 2(10):3158–3162

    Article  CAS  Google Scholar 

  39. Fang H, Wang N, Xie L, Huang P, Deng KY, Wu FY (2019) An excited-state intramolecular proton transfer (ESIPT)-based aggregation-induced emission active probe and its Cu (II) complex for fluorescence detection of cysteine. Sens Actuator B-Chem 294:69–77

    Article  CAS  Google Scholar 

  40. Liang C, Jiang S (2017) Fluorescence light-up detection of cyanide in water based on cyclization reaction followed by ESIPT and AIEE. Analyst 142(24):4825–4833

    Article  CAS  PubMed  Google Scholar 

  41. Sharma S, Virk TS, Pradeep CP, Dhir A (2017) ESIPT-induced carbazole‐based AIEE material for nanomolar detection of Cu2+ and CN Ions: a molecular keypad security device. Eur J Inorg Chem 18:2457–2463

    Article  Google Scholar 

  42. Li R, Yan L, Wang Z, Qi Z (2017) An aggregation-induced emissive NIR luminescent based on ESIPT and TICT mechanisms and its application to the detection of Cys. J Mol Struct 1136:1–6

    Article  CAS  Google Scholar 

  43. Chen G, Wang HY, Liu Y, Xu XP, Ji SJ (2010) The synthesis and characterisation of novel pyrazoline derivatives containing triphenylamine. Dye Pigment 85(3):194–200

    Article  CAS  Google Scholar 

  44. Revoju S, Biswas S, Eliasson B, Sharma GD (2018) Asymmetric triphenylamine–phenothiazine based small molecules with varying terminal acceptors for solution processed bulk-heterojunction organic solar cells. Phys Chem Chem Phys 20(9):6390–6400

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ying-Peng Zhang, contributed to the conception of the study;

Qi Teng, performed the experiment and wrote the manuscript;

Yun-Shang Yang, contributed significantly to analysis and manuscript preparation;

Jing-Qi Cao, performed the data analyses;

Ji-Jun Xue, helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Yun-Shang Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 13157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YP., Teng, Q., Yang, YS. et al. Aggregation‐induced Emission Properties of Triphenylamine Chalcone Compounds. J Fluoresc 31, 807–815 (2021). https://doi.org/10.1007/s10895-021-02711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02711-6

Keywords

Navigation