Skip to main content
Log in

Substantial Cellular Penetration of Fluorescent Imidazoquinoxalines

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent tools have revolutionized our capability to visualize, probe, study, and understand the biological cellular properties, processes and dynamics, enabling researchers to improve their knowledge for example in cancer field. In this paper, we use the peculiar properties of our Imiqualines derivatives to study their cellular penetration and distribution in a human melanoma cell line A375 using confocal microscopy. Preliminary results on colocalization with the potent protein target c-Kit of our lead are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Deleuze-Masquefa C, Moarbess G, Bonnet P-A, Pinguet F, Bazarbachi A, Bressolle F Imidazo[1,2-a]quinoxalines and derivatives thereof for treating cancers. WO/2009/043934, April 9, 2009

  2. Moarbess G, Deleuze-Masquefa C, Bonnard V, Gayraud-Paniagua S, Vidal JR, Bressolle F, Pinguet F, Bonnet PA (2008) In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]Quinoxaline, Imidazo[1,5-a]Quinoxaline, and Pyrazolo[1,5-a]Quinoxaline derivatives. Bioorg Med Chem 16(13):6601–6610. https://doi.org/10.1016/j.bmc.2008.05.022

    Article  CAS  PubMed  Google Scholar 

  3. Deleuze-Masquefa C, Moarbess G, Khier S, David N, Gayraud-Paniagua S, Bressolle F, Pinguet F, Bonnet PA (2009) New imidazo[1,2-a]quinoxaline Derivatives: synthesis and in vitro activity against human melanoma. Eur J Med Chem 44(9):3406–3411. https://doi.org/10.1016/j.ejmech.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  4. Zghaib Z, Guichou J-F, Vappiani J, Bec N, Hadj-Kaddour K, Vincent L-A, Paniagua-Gayraud S, Larroque C, Moarbess G, Cuq P, Kassab I, Deleuze-Masquéfa C, Diab-Assaf M, Bonnet P-A (2016) New imidazoquinoxaline derivatives: synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure–activity relationships. Bioorg Med Chem 24(11):2433–2440. https://doi.org/10.1016/j.bmc.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  5. Courbet A, Bec N, Constant C, Larroque C, Pugniere M, Messaoudi SE, Zghaib Z, Khier S, Deleuze-Masquefa C, Gattacceca F (2017) Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One 12(8):e0182022. https://doi.org/10.1371/journal.pone.0182022

    Article  CAS  PubMed  Google Scholar 

  6. Nabbouh AI, Hleihel RS, Saliba JL, Karam MM, Hamie MH, Wu H-CJM, Berthier CP, Tawil NM, Bonnet P-AA, Deleuze-Masquefa C, Hajj, H (2017) A. E. Imidazoquinoxaline derivative EAPB0503: A promising drug targeting mutant nucleophosmin 1 in acute myeloid leukemia. Cancer 123(9):1662–1673. https://doi.org/10.1002/cncr.30515

    Article  CAS  PubMed  Google Scholar 

  7. Chouchou A, Patinote C, Cuq P, Bonnet P-A (2018) Deleuze-Masquéfa C Imidazo[1,2-a]quinoxalines derivatives grafted with amino acids: synthesis and evaluation on A375 melanoma cells. Mol Basel Switz 23 (11). https://doi.org/10.3390/molecules23112987

  8. Patinote C, Bou Karroum N, Moarbess G, Deleuze-Masquefa C, Hadj-Kaddour K, Cuq P, Diab-Assaf M, Kassab I, Bonnet P-A (2017) Imidazo[1,2-a]Pyrazine, Imidazo[1,5-a]Quinoxaline and Pyrazolo[1,5-a]Quinoxaline derivatives as IKK1 and IKK2 inhibitors. Eur J Med Chem 138:909–919. https://doi.org/10.1016/j.ejmech.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  9. Chouchou A, Marion B, Enjalbal C, Roques C, Cuq P, Bonnet P-A, Bressolle-Gomeni FMM, Deleuze-Masquéfa C (2018) Liquid chromatography-electrospray ionization-tandem mass spectrometry method for quantitative estimation of new imiqualine leads with potent anticancer activities in rat and mouse plasma. application to a pharmacokinetic study in mice. J Pharm Biomed Anal 148:369–379. https://doi.org/10.1016/j.jpba.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  10. Karroum NB, Patinote C, Deleuze-Masquéfa C, Moarbess G, Diab-Assaf M, Cuq P, Kassab I, Bonnet P-A (2018) Methylation of imidazopyrazine, imidazoquinoxaline, and pyrazoloquinoxaline through Suzuki–Miyaura cross coupling. Chem Heterocycl Compd 54(2):183–187. https://doi.org/10.1007/s10593-018-2252-8

    Article  CAS  Google Scholar 

  11. Deleuze-Masquefa C, Bonnet P-A, Cuq P, (2016) Patinote C New Imidazo[1,2-A]quinoxalines and derivates thereof for the treatment of cancer. WO/2016/107895, July 7, 2016

  12. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109(1):190–212. https://doi.org/10.1021/cr0783840

    Article  CAS  PubMed  Google Scholar 

  13. Specht EA, Braselmann E, Palmer AEA (2017) Critical comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol 79(1):93–117. https://doi.org/10.1146/annurev-physiol-022516-034055

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández-Lodeiro J, Fernández‐Lodeiro A, Djafari J, Capelo JL, Lodeiro C (2017) Green and red fluorescent dyes for translational applications in imaging and sensing analytes: a dual‐color. Flag ChemistryOpen 7(1):9–52. https://doi.org/10.1002/open.201700135

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42(2):111–129. https://doi.org/10.1016/j.tibs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  16. Garland M, Yim JJ, Bogyo MA (2016) Bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem Biol 23(1):122–136. https://doi.org/10.1016/j.chembiol.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  17. Liu H-W, Chen L, Xu C, Li Z, Zhang H, Zhang X-B, Tan W (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 47(18):7140–7180. https://doi.org/10.1039/C7CS00862G

    Article  CAS  Google Scholar 

  18. Qiu F, Wang D, Zhu Q, Zhu L, Tong G, Lu Y, Yan D, Zhu X (2014) Real-time monitoring of anticancer drug release with highly fluorescent star-conjugated copolymer as a drug carrier. Biomacromol 15(4):1355–1364. https://doi.org/10.1021/bm401891c

    Article  CAS  Google Scholar 

  19. Sailer BL, Valdez JG, Steinkamp JA, Darzynkiewicz Z, Crissman HA (1997) Monitoring uptake of ellipticine and its fluorescence lifetime in relation to the cell cycle phase by flow cytometry. Exp Cell Res 236(1):259–267. https://doi.org/10.1006/excr.1997.3717

    Article  CAS  PubMed  Google Scholar 

  20. Jain S, Diwan A, Sardana S Development and validation of UV spectroscopy and RP-HPLC Methods for estimation of imiquimod. No. 04, 6

  21. Zhao B, Rong Y-Z, Huang X-H, Shen J-S (2007) Experimental and theoretical study on the structure and electronic spectra of imiquimod and its synthetic intermediates. Bioorg Med Chem Lett 17(17):4942–4946. https://doi.org/10.1016/j.bmcl.2007.06.020

    Article  CAS  PubMed  Google Scholar 

  22. Patinote C, Hadj-Kaddour K, Damian M, Deleuze-Masquéfa C, Cuq P, Bonnet P-A (2017) Fluorescence study of imidazoquinoxalines. J Fluoresc 27(5):1607–1611. https://doi.org/10.1007/s10895-017-2097-z

    Article  CAS  PubMed  Google Scholar 

  23. Wilson K, Webster SP, Iredale JP, Zheng X, Homer NZ, Pham NT, Auer M, Mole DJ (2017) Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis. Methods Appl Fluoresc 6(1):015002. https://doi.org/10.1088/2050-6120/aa8c60

    Article  CAS  PubMed  Google Scholar 

  24. Marzagalli M, Moretti RM, Messi E, Marelli MM, Fontana F, Anastasia A, Bani MR, Beretta G, Limonta P (2018) Targeting melanoma stem cells with the vitamin E derivative δ-Tocotrienol. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-017-19057-4

    Article  CAS  Google Scholar 

  25. FluoroBrite DMEM, Media - FR https://www.thermofisher.com/fr/fr/home/life-science/cell-culture/mammalian-cell-culture/classical-media/fluorobrite-media.html. Accessed 26 Nov 2019

Download references

Acknowledgements

We would like to thank Marjorie Damian from the team Cellular Pharmacology (IBMM, Montpellier, France) directed by Dr. Jean-Louis Banères for technical support to record UV and fluorescence spectra. We also thank Marie-Pierre Blanchard, head of the MRI Imaging Platform at the Functional Genomics Institute belonging to the Biocampus of Montpellier (France), for having recorded all the data relating to confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Patinote.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patinote, C., Cirnat, N., Hadj-Kaddour, K. et al. Substantial Cellular Penetration of Fluorescent Imidazoquinoxalines. J Fluoresc 30, 1499–1512 (2020). https://doi.org/10.1007/s10895-020-02595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02595-y

Keywords

Navigation