Skip to main content
Log in

A Highly Efficient BODIPY Based Turn-off Fluorescent Probe for Detecting Cu2+

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Based on boron-dipyrromethene (BODIPY), taking 2-hydroxy-N-(2-hydroxyphenyl)benzamide as recognition site, a new fluorescent probe HHPBA-BODIPY aimed at sensitively detecting Cu ions was designed, synthesized and characterized.The emission spectra of HHPBA-BODIPY exhibited an intensive green fluorescence around 510 nm, with a maximum absorption near 500 nm. When Cu2+ ions are present, the fluorescence at 510 nm can be quenched with a good linearity between the copper ion concentrationand the fluorescence intensity and the detection limit is 0.35 μM. HHPBA-BODIPY is also selective toward Cu2+, while other metal ions show no interfere except Fe3+ and Cr3+ ions. In addition, HHPBA-BODIPY also proved efficient to detect Cu2+ in water samples which offers the possibility to detect trace amount of Cu2+ for environmental monitoring. Copper ions; BODIPY; fluorescent probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim B-E, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4(3):176–185

    CAS  PubMed  Google Scholar 

  2. Pena MM, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129(7):1251–1260

    CAS  PubMed  Google Scholar 

  3. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Tosicology. 283(2):65–87

    CAS  Google Scholar 

  4. Svetlana L, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046

    Google Scholar 

  5. Elena G, Henryk K, Daniela V, Gianni V (2010) Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chemical Reviews; 37(37):no-no.

  6. Rossi L, Arciello M, Capo C, Rotilio G (2006) Copper imbalance and oxidative stress in neurodegeneration. Ital J Biochem 55(3–4):212

    CAS  PubMed  Google Scholar 

  7. Sharma AK, Pavlova ST, Kim J, Kim J, Mirica LM (2013) The effect of Cu2+ and Zn2+ on the Aβ42 peptide aggregation and cellular toxicity. Metallomics Integrated Biometal Science 5(11):1529–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Z, Liu Y, Wang E (2019) A highly selective "turn-on" fluorescent probe for detecting Cu2+ in two different sensing mechanisms. Dyes Pigments 163:533–537

    CAS  Google Scholar 

  9. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30

    CAS  PubMed  Google Scholar 

  10. Schamphelaere KAC (2002) De, Janssen CR. A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environmental Science & Technology 36(1):48–54

    Google Scholar 

  11. Xiaowei C, Weiying L, Kaibo Z, Longwei H (2012) A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether. Chem Commun 48(85):10529–10531

    Google Scholar 

  12. Liu J, Yue Y, Wang J, Yan X, Liu R, Sun Y, Li X (2015) Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescencespectroscopy and computational approach. Spectrochim Acta A Mol Biomol Spectrosc 145:473–481

    CAS  PubMed  Google Scholar 

  13. Domaille DW, Que EL Chang CJ. Synthetic fluorescent sensors for studying the cell biology of metals

  14. Chen H, Sun T, Qiao XG, Tang QO, Zhao SC, Zhou Z (2018) Red-emitting fluorescent probe for detecting hypochlorite acid in vitro and in vivo. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy. 204:196–202

    CAS  Google Scholar 

  15. Young-Keun Y, Keun-Jeong Y, Jinsung T (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127(48):16760–16761

    Google Scholar 

  16. Zhaochao X, Juyoung Y, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39(6):1996–2006

    Google Scholar 

  17. Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    CAS  PubMed  Google Scholar 

  18. Hisataka K, Mikako O, Raphael A, Choyke PL, Yasuteru U (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640

    Google Scholar 

  19. Yue Y, Yin C, Huo F, Chao J, Zhang Y (2016) Thiol-chromene click chemistry: a turn-on fluorescent probe for specific detection of cysteine and its application in bioimaging. Sensors & Actuators B Chemical. 223(2):496–500

    CAS  Google Scholar 

  20. Vernekar SKV, Hallaq HY, Guy C, Thompson AJ, Linda S, Lummis SCR et al (2010) Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of granisetron derivatives. J Med Chem 53(5):2324–2328

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Belousov V, Fradkov A, Lukyanov K, Staroverov D, Shakhbazov K (2006) Av, Lukyanov S. genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    CAS  PubMed  Google Scholar 

  22. Liu J, Liu C, He W (2013) Fluorophores and their applications as molecular probes in living cells. Curr Org Chem 17(6):564–579

    CAS  Google Scholar 

  23. Dujols V, Czarnik AW (1997) A Long-wavelength fluorescent Chemodosimeter selective for cu(II) ion in water. J Am Chem Soc 119(31):7386–7387

    CAS  Google Scholar 

  24. Yu X, Zifan L, Xiaotong C, Aijun T (2008) Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta. 74(5):1148–1153

    Google Scholar 

  25. Liang H, Xiao W, Guoqiang X, Pinxian X, Zhengpeng L, Min X et al (2010) A new rhodamine-based chemosensor for Cu2+ and the study of its behaviour in living cells. Dalton Trans 39(34):7894–7896

    Google Scholar 

  26. Ying Z, Fang W, Youngmee K, Sung-Jin K, Juyoung Y (2009) Cu2+-selective ratiometric and "off-on" sensor based on the rhodamine derivative bearing pyrene group. Org Lett 11(19):4442–4445

    Google Scholar 

  27. Wang Y, Chang HQ, Wu WN, Peng WB, Yan YF, He CM, Chen TT, Zhao XL, Xu ZQ (2016) Rhodamine 6G hydrazone bearing pyrrole unit: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Sensors & Actuators B Chemical 228:395–400

    CAS  Google Scholar 

  28. Chen Z (2013) Wang, Limin, Zou, gang, et al. highly selective fluorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 105(105C):57–61

    CAS  Google Scholar 

  29. Cristina S, Giuseppe Trusso S, Maria Emanuela A, Ballistreri FP, Agata C, Maria Laura G et al (2013) A ratiometric naphthalimide sensor for live cell imaging of copper(I). Chem Commun 49(49):5565–5567

    Google Scholar 

  30. Zhang S, Yu T, Sun M, Yu H, Zhang Z, Wang S, Jiang H (2014) Highly sensitive and selective fluorescence detection of copper (II) ion based on multi-ligand metal chelation. Talanta. 126(126):185–190

    CAS  PubMed  Google Scholar 

  31. Hee LM, Hyun Jung K, Sangwoon Y, Noejung P, Jong SK (2008) Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine. Org Lett 10(2):213–216

    Google Scholar 

  32. Noel B, Volker L, Wim D (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41(3):1130–1172

    Google Scholar 

  33. Kowada T, Maeda H, Kikuchi K (2015) BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 44(14):4953–4972

    CAS  PubMed  Google Scholar 

  34. Yu G, Tasuku U, Yasuteru U, Hirotatsu K, Tetsuo N (2006) Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Analytical & Bioanalytical Chemistry 386(3):621–626

    Google Scholar 

  35. Wakamiya A, Murakami T, Yamaguchi S (2013) Benzene-fused BODIPY and fully-fused BODIPY dimer: impacts of the ring-fusing at the b bond in the BODIPY skeleton. Chem Sci 4(3):1002–1007

    CAS  Google Scholar 

  36. Hua L, Zhaoli X, John M, Zhen S, Xiaozeng Y, Nagao K (2010) Specific Cu2+-induced J-aggregation and Hg2+-induced fluorescence enhancement based on BODIPY. Chem Commun 46(20):3565–3567

    Google Scholar 

  37. Kumar A, Narasimhan B, Kumar D (2007) Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorg Med Chem 15(12):4113–4124

    CAS  PubMed  Google Scholar 

  38. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55(7):712–724

    Google Scholar 

  39. Chen F, Hou F, Huang L, Cheng J, Liu H, Xi P, Bai D, Zeng Z (2013) Development of a novel fluorescent probe for copper ion in near aqueous media. Dyes Pigments 98(1):146–152

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21876073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Wang, L., Jiang, C. et al. A Highly Efficient BODIPY Based Turn-off Fluorescent Probe for Detecting Cu2+. J Fluoresc 30, 883–890 (2020). https://doi.org/10.1007/s10895-020-02544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02544-9

Keywords

Navigation