Skip to main content
Log in

A Facile Preparation of a New Water-Soluble Acridine Derivative and Application as a Turn-off Fluorescence Chemosensor for Selective Detection of Hg2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new acridine-based chemosensor was prepared, characterized and investigated for quantitative detection of Hg2+ ions in aqueous solutions. DFT and TD-DFT calculations showed that formation of a coordination bond between Hg2+ and the thiolate-sensor accounts for the fluorescence quenching, forming [HgLSCl2]2− as the most stable species. Limit of detection and limit of quantification were as low as 4.40 and 14.7 μmol L−1, respectively (R2 = 0.9892, least squares method), and a linear concentration range of 14.7–100 μmol L−1. Benesi-Hildebrand and Job formalisms are in accordance with the formation of a stable complex with a 1:1 (metal ion/sensor) ratio, and a determined binding constant of 5.14 × 103 L mol−1. Robustness was verified based on the variation of several analytical conditions. In addition, the method presented maximum relative standard deviation of 4.6%, and recovery results was (90.3 ± 4,6)% from distilled water, with no effect of interfering ions. Analytical figures of merit showed that the sensor can be an attractive low cost alternative for detection of Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aletti AB, Gillen DM, Gunnlaugsson T (2018) Luminescent/colorimetric probes and (chemo-) sensors for detecting anions based on transition and lanthanide ion receptor/binding complexes. Coord Chem Rev 354:98–120

    Article  CAS  Google Scholar 

  2. Kaur B, Kaur N, Kumar S (2018) Colorimetric metal ion sensors – a comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69

    Article  CAS  Google Scholar 

  3. Chowdhurym S, Rooj B, Dutta A, Mandal U (2018) Review on recent advances in metal ions sensing using different fluorescent probes. J Fluoresc 28:999–1021

    Article  CAS  Google Scholar 

  4. Natale FD, Lancia A, Molino A, Natale MD, Karatza D, Musmarra D (2006) Capture of mercury ions by natural and industrial materials. J Hazard Mater 132:220–225

    Article  PubMed  CAS  Google Scholar 

  5. Chatterjee S, Sarkar S, Bhattacharya S (2014) Toxic metals and autophagy. Chem Res Toxicol 27:1887–1900

    Article  CAS  PubMed  Google Scholar 

  6. Havarinasab S, Hultman P (2005) Organic mercury compounds and autoimmunity. Autoimmun Rev 4:270–275

    Article  CAS  PubMed  Google Scholar 

  7. Falter R, Schöler HF (1994) Interfacing high-performance liquid chromatography and cold-vapour atomic absorption spectrometry with on-line UV irradiation for the determination of organic mercury compounds. J Chromatogr A 675:253–256

    Article  CAS  Google Scholar 

  8. Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res 77:68–72

    Article  CAS  PubMed  Google Scholar 

  9. Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203–1203

    Article  CAS  PubMed  Google Scholar 

  10. Lawson NM, Mason RP (1998) Accumulation of mercury in estuarine food chains. Biogeochemistry 40:235–247

    Article  CAS  Google Scholar 

  11. Ynalvez R, Gutierrez J, Gonzalez-Cantu H (2016) Mini-review: toxicity of mercury as a consequence of enzyme alteration. Biometals 29:781–788

    Article  CAS  PubMed  Google Scholar 

  12. Rooney JP (2014) The retention time of inorganic mercury in the brain - a systematic review of the evidence. Toxicol Appl Pharmacol 274:425–435

    Article  CAS  PubMed  Google Scholar 

  13. Aschner M (2012) Considerations on methylmercury (MeHg) treatments in in vitro studies. Neurotoxicology 33:512–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zalups RK, Lash LH (2006) Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol Appl Pharmacol 214:88–97

    Article  CAS  PubMed  Google Scholar 

  15. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    Article  CAS  PubMed  Google Scholar 

  16. Silbergeld EK, Silva IA, Nyland JF (2005) Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol 207:282–292

    Article  PubMed  CAS  Google Scholar 

  17. Tchounwou PB, Ayensu WK, Ninashvili SD (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  CAS  PubMed  Google Scholar 

  18. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  PubMed  Google Scholar 

  19. Zhang C, Zhang H, Li M, Zhou Y, Zhang G, Shi L, Yao Q, Shuang S, Dong C (2019) A turn-on reactive fluorescent probe for Hg2+ in 100% aqueous solution. Talanta 197:218–224

    Article  CAS  PubMed  Google Scholar 

  20. Souza LRR, Zanatta MBT, da Silva IA, da Veiga MAMS (2018) Mercury determination in soil and sludge samples by HR CS GFAAS: comparison of sample preparation procedures and chemical modifiers. J Anal Atom Spectrom 33:1477–1485

    Article  Google Scholar 

  21. Mo J, Li Q, Guo X, Zhang G, Wang Z (2017) Flow injection photochemical vapor generation coupled with miniaturized solution-cathode glow discharge atomic emission spectrometry for determination and speciation analysis of mercury. Anal Chem 89:10353–10360

    Article  CAS  PubMed  Google Scholar 

  22. Elias G, Marguí E, Díez S, Fontàs C (2018) Polymer inclusion membrane as an effective sorbent to facilitate mercury storage and detection by X-ray fluorescence in natural waters. Anal Chem 90:4756–4763

    Article  CAS  PubMed  Google Scholar 

  23. Shih TT, Chen JY, Luo YT, Lin CH, Liu YH, Su YA, Chao PC, Sun YC (2019) Development of a titanium dioxide-assisted preconcentration/on-site vapor-generation chip hyphenated with inductively coupled plasma-mass spectrometry for online determination of mercuric ions in urine samples. Anal Chim Acta 1063:82–90

    Article  CAS  PubMed  Google Scholar 

  24. Roshidi MDA, Fen YW, Omar NAS, Saleviter S, Daniyal WMEMM (2019) Optical studies of Graphene oxide/poly(amidoamine) Dendrimer composite thin film and its potential for sensing Hg2+ using surface Plasmon resonance SpectroscopySens. Materials 4:1147–1156

    Google Scholar 

  25. Sánchez-Calvo A, Fernández-Abedul MT, Blanco-López MC, Costa-García A (2019) Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters. Sensors Actuators B Chem 290:87–92

    Article  CAS  Google Scholar 

  26. Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, Gulyani A, Chellappa D (2018) Chemically diverse small molecule fluorescent chemosensors for copper ion Coord. Chem Rev 357:50–104

    CAS  Google Scholar 

  27. Li J, Yin C, Huo F (2016) Development of fluorescent zinc chemosensors based on various fluorophores and their applications in zinc recognition. Dyes Pigments 141:100–133

    Article  CAS  Google Scholar 

  28. Ma LJ, Liu KL, Yin MZ, Chang J, Geng YT, Pan K (2017) Fluorescent nanofibrous membrane (FNFM) for the detection of mercuric ion (II) with high sensitivity and selectivity. Sens. Actuators B Chem 238:120–127

    Article  CAS  Google Scholar 

  29. Zhang C, Gao B, Zhang Q, Zhang G, Shuang S, Dong C (2016) A simple Schiff base fluorescence probe for highly sensitive and selective detection of Hg2+ and Cu2+. Talanta 154:278–283

    Article  CAS  PubMed  Google Scholar 

  30. Zhang JF, Kim JS (2009) Small-molecule fluorescent chemosensors for Hg2+ ion. Anal Sci 25:1271–1281

    Article  PubMed  Google Scholar 

  31. Jiang J, Duan Q, Zheng G, Yang L, Zhang J, Wang Y, Zhang H, He J, Sun H, Ho D (2019) An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg2+ detection and imaging applications. Analyst 144:1353–1360

    Article  CAS  PubMed  Google Scholar 

  32. Hazra S, Bodhak C, Chowdhury S, Sanyal D, Mandal S, Chatoopadhyay K (2019) A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg2+ present in aqueous medium and its biological applications. Anal Bioanal Chem 411:1143–1157

    Article  CAS  PubMed  Google Scholar 

  33. Yang G, Meng X, Fang S, Duan H, Wang L, Wang Z (2019) A highly selective colorimetric fluorescent probe for detection of Hg2+ and its application on test strips. RSC Adv 9:8529–8534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song F, Yang C, Shao X, Du L, Zhu J, Kan C (2019) A reversible “turn-off-on” fluorescent probe for real-time visualization of mercury(II) in environmental samples and its biological applications. Dyes Pigments 165:444–450

    Article  CAS  Google Scholar 

  35. Wang Q, Jin L, Wang W, Hu T, Chen C (2019) Rhodamine derivatives as selective“naked-eye” colorimetric and fluorescence off-on sensor for Hg2+ in aqueous solution and its applications in bioimaging. J Lumin 209:411–419

    Article  CAS  Google Scholar 

  36. Rao PG, Saritha B, Rao TS (2019) Colorimetric and turn-on fluorescence Chemosensor for Hg2+ ion detection in aqueous media. J Fluoresc 29:353–360

    Article  CAS  PubMed  Google Scholar 

  37. Elmorsi TM, Aysha TS, Sheier MB, Bedair AH (2017) Synthesis, Kinetics, and Equilibrium Study of Highly Sensitive Colorimetric Chemosensor for Monitoring of Copper Ions based on Benzo[f]fluorescein Dye Derivatives. Z Anorg Allg Che 643:811–818

    Article  CAS  Google Scholar 

  38. Chen GQ, Guo Z, Zeng GM, Tang L (2015) Fluorescent and colorimetric sensors for environmental mercury detection. Analyst 140:5400–5443

    Article  CAS  PubMed  Google Scholar 

  39. Bera K, Das AK, Nag M, Basak S (2014) Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Anal Chem 86:2740–2746

    Article  CAS  PubMed  Google Scholar 

  40. Song FL, Watanabe S, Floreancig PE, Koide K (2008) Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J Am Chem Soc 130:16460–16461

    Article  CAS  PubMed  Google Scholar 

  41. Bettazzi F, Voccia D, Bencini A, Giorgi C, Palchetti I, Valtancoli B, Conti L (2018) Optical and electrochemical study of Acridine-based Polyaza ligands for anion sensing. Eur J Inorg Chem 2675-2679

  42. Wang C, Fu J, Yao K, Chang Y, Yang L, Xu K (2018) Development of Acridine-Derived “Turn On” Al3+ Fluorescent Sensors and Their Imaging in Living Cells. Chemistry Select 3:2805–2811

    CAS  Google Scholar 

  43. Hess FK, Stewart PB (1975) Preparation of a new immunosuppressant, 4,5-bis(aminomethyl)acridine. J Med Chem 18:320–321

    Article  CAS  PubMed  Google Scholar 

  44. Laronze-Cochard M, Young-min K, Bertrand B, Riou JF, Laronze JY, Sapi J (2009) Synthesis and biological evaluation of novel 4,5-bis(dialkylaminoalkyl)-substituted acridines as potent telomeric G-quadruplex ligands. Eur J Med Chem 44:3880–3888

    Article  CAS  PubMed  Google Scholar 

  45. Maity D, Mukherjee A, Mandal SK, Roy P (2019) Modulation of fluorescence sensing properties of quinoline-based chemosensor for Zn2+: Application in cell imaging studies. J Lumin 210:508–518

    Article  CAS  Google Scholar 

  46. Carlos FS, Nunes MC, De Boni L, Machado GS, Nunes FS (2017) A novel fluorene-derivative Schiff-base fluorescent sensor for copper(II) in organic media. J Photochem Photobiol A Chem 348:41–46

    Article  CAS  Google Scholar 

  47. Chiron J, Galy JP (2004) Reactivity of the Acridine ring: a review. Synthesis 3:313–325

    Article  CAS  Google Scholar 

  48. Zhang Z, Kodumuru V, Sviridov S, Liu S, Chafeev M, Chowdhury S, Cjakka N, Sun J, Gauthuer SJ, Ratkay LG, Kwan R, Thompson J, Cutts AB, Fu J, Kamboj R, Goldberg YP, Cadieux JA (2012) Discovery of benzylisothioureas as potent divalent metal transporter 1 (DMT1) inhibitors. Bioorg Med Chem 1:5108–5113

    Article  CAS  Google Scholar 

  49. Hrdlovic P, Donovalova J, Stankovicova H, Gaplovsky A (2010) Influence of polarity of solvents on the spectral properties of bichromophoric coumarins. Molecules 15:8915–8932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nunes MC, Carlos FS, Fuganti O, Galindo DDM, De Boni L, Abate G, Nunes FS (2020) Turn-on fluorescence study of a highly selective acridine-based chemosensor for Zn2+ in aqueous solutions. Inorg Chim Acta 499:119191. https://doi.org/10.1016/j.ica.2019.119191

    Article  CAS  Google Scholar 

  51. G. 03, Gaussian 03, in: M.J.E.A. Frisch (Ed.) (2004) Gaussian, Inc., Wallingford CT

  52. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Computer-Aided Mol Design 14:123–134

    Article  CAS  Google Scholar 

  53. Schaftenaar G, Vlieg E, Vriend G (2017) Molden 2.0: quantum chemistry meets proteins. J Computer-Aided Mol Design 31:789–800

    Article  CAS  Google Scholar 

  54. Jmol: an open-source Java viewer for chemical structures in 3D

  55. O'Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  56. Weller M, Overton T, Rourke J, Armstrong F (2014) Inorganic chemistry, 6th edn. Oxford Univ Press, Oxford

    Google Scholar 

  57. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197–202

    Article  CAS  Google Scholar 

  58. Espada-Bellido E, Galindo-Riaño MD, García-Vargas M, Narayanaswamy R (2010) Selective chemosensor for copper ions based on fluorescence quenching of a Schiff-base fluorophore. Appl Spectrosc 64:727–732

    Article  CAS  PubMed  Google Scholar 

  59. Roundhil DM (1994) Photochemistry and Photophysics of metal complexes. Plenum Press, New York

    Book  Google Scholar 

  60. Hibbert DB, Gooding JJ (2006) Data analysis for chemistry - an introductory guide for students and laboratory scientists. Oxford University Press, Oxford

    Google Scholar 

  61. Miller JN, Miller JC (2005) Statistics and Chemometrics for Analytical Chemistry. 5th Ed. Edinburgh. Pearson - Prentice Hall

  62. Ellison SLR, Barwick VJ, Farrant TJD (2009) Practical statistics for the analytical scientist- a bench guide, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  63. Rutledge DN, Barros AS (2002) Durbin-Watson statistic as a morphological estimator of information content. Anal Chim Acta 454:277–295

    Article  CAS  Google Scholar 

  64. Karageorgou E, Sanaribidou V (2014) Youden test application in robustness assays during method validation. J Chromatogr A 1353:131–139

    Article  CAS  PubMed  Google Scholar 

  65. Bhosale TR, Chandam DR, Anbhule PV, Deshmukh MB (2019) Synthesis of novel 4-((substituted bis-indolyl)methyl)-benzo-15-crown-5 for the colorimetric detection of Hg2+ ions in an aqueous medium. J Heterocyclic Chem 56:477–484

    Article  CAS  Google Scholar 

  66. Huang HJ, Chir JL, Cheng HJ, Chen SJ, Hu CH, Wu AT (2011) Synthesis of highly selective Indole-based sensors for mercuric ion. J Fluoresc 21:1021–1026

    Article  CAS  PubMed  Google Scholar 

  67. Xu K, Li Y, Si Y, He Y, Ma J, He J, Hou H, Li K A “turn-on” fluorescent chemosensor for the detection of Hg(II) in buffer-free aqueous solution with excellent selectivity. J Lumin 204:182–188

  68. Kang H, Xu H, Fan C, Liu G, Pu S (2018) A new sensitive symmetric fluorescein-linked diarylethene chemosensor for Hg2+ detection. J Photochem Photobiol A Chem 367:465–470

    Article  CAS  Google Scholar 

  69. Zhang X, Wang Y, Yuan H, Guo X, Dai B, Jia X (2019) An acid-fluorescence and alkali-colorimetric dual channels sensor for Hg2+ selective detection by different coordination manners in aqueous media. J Photochem Photobiol A Chem 373:12–19

    Article  CAS  Google Scholar 

  70. Joshi S, Kumari S, Sarmah A, Pant DD, Sakhuja R (2017) Detection of Hg2+ ions in aqueous medium using an indole-based fluorescent probe: experimental and theoretical investigations. J Mol Liq 248:668–677

    Article  CAS  Google Scholar 

  71. Rice KM, Walker EM, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Brazilian Research Council CNPq supported this work. Authors thank CNPq and CAPES for research fellowships. CNPq Grant # 401119/2016-5. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001”. We gratefully thank Professor Leni Campos Akcelrud (Paulo Scarpa Laboratory, UFPR)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Souza Nunes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, M.C., dos Santos Carlos, F., Fuganti, O. et al. A Facile Preparation of a New Water-Soluble Acridine Derivative and Application as a Turn-off Fluorescence Chemosensor for Selective Detection of Hg2+. J Fluoresc 30, 235–247 (2020). https://doi.org/10.1007/s10895-020-02489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02489-z

Keywords

Navigation