Skip to main content
Log in

Photoinduced Reversible Modulation of Fluorescence of CdSe/ZnS Quantum Dots in Solutions with Diarylethenes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Steady-state absorption and fluorescence spectra, fluorescence decay kinetics of CdSe/ZnS quantum dots (QD) with photochromic diarylethenes (DAE) in toluene have been studied. Two kinds of QDs emitting at 525 and 600 nm were investigated and DAE were selected to ensure good overlap of their photoinduced absorption band with QDs emission spectra. It has been found that photochromic molecules form complexes with QD which results in partial fluorescence quenching. A reversible modulation of QDs emission intensity which correlates with magnitude of transient photoinduced absorption band of the diarylethenes during photochromic transformations has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feringa BL (ed) (2001) Molecular switches. Wiley Weinheim.

    Google Scholar 

  2. Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25(3):378–399

    CAS  PubMed  Google Scholar 

  3. Klajn R, Stoddart JF, Grzybowski BA (2010) Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem Soc Rev 39(6):2203–2237

    CAS  PubMed  Google Scholar 

  4. Hasegawa Y, Nakagawa T, Kawai T (2010) Recent progress of luminescent metal complexes with photochromic units. Coord Chem Rev 254(21–22):2643–2651

    CAS  Google Scholar 

  5. Cusido J, Deniz E, Raymo FM (2009) Fluorescent switches based on photochromic compounds. Eur J Org Chem 2009(13):2031–2045

    Google Scholar 

  6. Raymo FM, Tomasulo M (2005) Fluorescence modulation with photochromic switches. J Phys Chem A 109(33):7343–7352

    CAS  PubMed  Google Scholar 

  7. Díaz SA, Menendez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS nano 5(4):2795–2805

    PubMed  Google Scholar 

  8. Yildiz I, Deniz E, Raymo FM (2009) Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev 38(7):1859–1867

    CAS  PubMed  Google Scholar 

  9. Yildiz I, Tomasulo M, Raymo FM (2008) Electron and energy transfer mechanisms to switch the luminescence of semiconductor quantum dots. J Mater Chem 18(46):5577–5584

    CAS  Google Scholar 

  10. Tomasulo M, Yildiz I, Raymo FM (2007) Nanoparticle-induced transition from positive to negative photochromism. Inorg Chim Acta 360(3):938–944

    CAS  Google Scholar 

  11. Binder WH, Sachsenhofer R, Straif CJ, Zirbs R (2007) Surface-modified nanoparticles via thermal and Cu (I)-mediated “click” chemistry: generation of luminescent CdSe nanoparticles with polar ligands guiding supramolecular recognition. J Mater Chem 17(20):2125–2132

    CAS  Google Scholar 

  12. Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22(24):10284–10,290

    CAS  PubMed  Google Scholar 

  13. Tomasulo M, Yildiz I, Raymo FM (2006) pH-sensitive quantum dots. J Phys Chem B 110(9):3853–3855

    CAS  PubMed  Google Scholar 

  14. Tomasulo M, Yildiz I, Raymo FM (2006) Luminescence modulation with semiconductor quantum dots and photochromic ligands. Aust J Chem 59(3):175–178

    CAS  Google Scholar 

  15. Jares-Erijman E, Giordano L, Spagnuolo C, Lidke K, Jovin TM (2005) Imaging quantum dots switched on and off by photochromic fluorescence resonance energy transfer (pcFRET). Mol Cryst Liq Cryst 430(1):257–265

    CAS  Google Scholar 

  16. Zhu L, Zhu M-Q, Hurst JK, Li AD (2005) Light-controlled molecular switches modulate nanocrystal fluorescence. JACS 127(25):8968–8970

    CAS  Google Scholar 

  17. Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. JACS 126(1):30–31

    CAS  Google Scholar 

  18. Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). JACS 124(25):7481–7489

    CAS  Google Scholar 

  19. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    CAS  PubMed  Google Scholar 

  20. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6):435

    CAS  PubMed  Google Scholar 

  21. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6(1):143

    CAS  Google Scholar 

  22. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    CAS  PubMed  Google Scholar 

  23. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737

    Google Scholar 

  24. McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJ, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4(2):138

    CAS  PubMed  Google Scholar 

  25. Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10):765

    CAS  PubMed  Google Scholar 

  26. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110(11):6873–6890

    CAS  PubMed  Google Scholar 

  27. Dayneko S, Lypenko D, Linkov P, Sannikova N, Samokhvalov P, Nikitenko V, Chistyakov A (2016) Application of CdSe/ZnS/CdS/ZnS core–multishell quantum dots to modern OLED technology. Mater. Today: Proc. 3(2):211–215

    Google Scholar 

  28. Vitukhnovskii A, Vaschenko A, Bychkovskii D, Dirin D, Tananaev P, Vakshtein M, Korzhonov D (2013) Photo-and electroluminescence from semiconductor colloidal quantum dots in organic matrices: QD-OLED. Semiconductors 47(12):1567–1569

    CAS  Google Scholar 

  29. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    CAS  PubMed  Google Scholar 

  30. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18,753

    CAS  Google Scholar 

  31. Barachevsky V, Kobeleva O, Ayt A, Gorelik A, Valova T, Krayushkin M, Yarovenko V, Levchenko K, Kiyko V, Vasilyuk G (2013) Optical polymer materials with photocontrolled fluorescence. Opt Mater 35(10):1805–1809

    CAS  Google Scholar 

  32. Barachevsky V (2015) Nanophotochromism. OPP 3(1):8–41. https://doi.org/10.1515/oph-2015-0003 ISSN:2299-3177

    Article  Google Scholar 

  33. Barachevsky V (2018) Photochromic Nanoparticles and Their Properties. Crystallography Reports 63(2):271–275

    CAS  Google Scholar 

  34. Barachevsky V (2018) Advances in photonics of organic photochromism. J Photochem Photobiol A: Chem 354:61–69

    CAS  Google Scholar 

  35. Barachevsky V, Kobeleva O, Venidiktova O, Ayt A, Vasilyuk G, Maskevich S, Krayushkin M (2019) Photoinduced modulation of emission of quantum dots CdSe/ZnS by photochromic transformation of diarylethenes. Crystallogr. Rep. 64(5):823–827

    CAS  Google Scholar 

  36. Barachevsky V, Krayushkin M, Kiyko V (2017) Light-Sensitive Organic Recording Media for Three-Dimensional Optical Memory. Photon-Working Switches. Springer, In, pp 181–207

    Google Scholar 

  37. Tuktarov AR, Khuzin AA, Akhmetov AR, Barachevsky VA, Venidiktova OV, Dzhemilev UM (2015) Synthesis and photochromic properties of fullerene C60 adducts with dithienylethenes. Tetrahedron Lett 56(52):7154–7157

    CAS  Google Scholar 

  38. Wahl M (2014) Modern TCSPC electronics: principles and acquisition modes. In: Advanced Photon Counting. Springer, pp. 1–21.

  39. O’Connor DV, Phillips D (1984) Time-correlated Single Photon Counting. Academic Press, New York

    Google Scholar 

  40. Maskevich А, Stepuro V, Kurguzenkov S, Lavysh A (2013) Hardware and software complex for fluorescence decay studies. Vesnik of Yanka Kupala State University of Grodno (in Russian) 159(3):107-119 ISSN:2076-4847

  41. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK (2008) Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B 112(49):15893–15902. https://doi.org/10.1021/jp805822c

    Article  CAS  PubMed  Google Scholar 

  42. Bevington PR, Robinson DK (1969) Data reduction and error analysis for the physical sciences, vol 336 McGraw-Hill New York

    Google Scholar 

  43. Yuan Y-X (2011) Recent advances in numerical methods for nonlinear equations and nonlinear least squares. NACO 1(1):15–34 ISSN:2155-3289

    Google Scholar 

  44. Stepuro V (2001) Studies of fluorescence decay for multicomponent systems using global analysis. Vesnik of Yanka Kupala State University of Grodno (in Russian) 5 (1):52-61 ISSN:2076-4847

  45. Johnson ML, Frasier SG (1985) Nonlinear least-squares analysis. In: Methods in Enzymology, vol 117. Elsevier, pp. 301–342.

  46. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer Science & Business Media,

    Google Scholar 

  47. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290):1067–1071

    CAS  Google Scholar 

  48. Giansante C, Infante I (2017) Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective. J Phys Chem Lett 8(20):5209–5215

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zenkevich E, Stupak A, Göhler C, Krasselt C, von Borczyskowski C (2015) Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule. ACS nano 9(3):2886–2903

    CAS  PubMed  Google Scholar 

  50. Zenkevich EI, Blaudeck T, Milekhin A, Von Borczyskowski C (2012) Size-Dependent non-FRET photoluminescence quenching in nanocomposites based on semiconductor quantum dots CdSe/ZnS and functionalized porphyrin ligands. Int. J. Spectrosc. 2012:971791. https://doi.org/10.1155/2012/971791

    Article  CAS  Google Scholar 

  51. Schlegel G, Bohnenberger J, Potapova I, Mews A (2002) Fluorescence decay time of single semiconductor nanocrystals. Phys Rev. Lett 88 (13):137401.

  52. Wang H, de Mello DC, Meijerink A, Glasbeek M (2006) Ultrafast exciton dynamics in CdSe quantum dots studied from bleaching recovery and fluorescence transients. J Phys Chem B 110(2):733–737

    CAS  PubMed  Google Scholar 

  53. Knowles KE, McArthur EA, Weiss EA (2011) A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. Acs Nano 5(3):2026–2035

    CAS  PubMed  Google Scholar 

  54. Kobeleva O, Valova T, Barachevskii V, Krayushkin M, Lichitskii B, Dudinov A, Kuznetsova OY, Adamov G, Grebennikov E (2010) Spectral-kinetic evidence of interaction of photochromic diarylethenes with silver nanoparticles. Opt Spectrosc 109(1):101–105

    CAS  Google Scholar 

  55. Cantor CR, Schimmel PR (1980) Biophysical chemistry: Part III: the behavior of biological macromolecules. Macmillan,

    Google Scholar 

  56. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    CAS  Google Scholar 

  57. Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem Phys Lett 102(6):501–507

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Belarusian Republican Foundation for Fundamental Research (Project No. F18R-074) and Russian Foundation for Basic Research (Project No. 18-33-00010 Bel_a). The authors are grateful to Prof. M. Artemyev (Dr. of Sciences (Chemistry), Head of Laboratory of Nanochemistry, Institute of Physical and Chemical problems of BSU) for the sample of quantum dots and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Stsiapura.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpach, P.V., Scherbovich, A.A., Vasilyuk, G.T. et al. Photoinduced Reversible Modulation of Fluorescence of CdSe/ZnS Quantum Dots in Solutions with Diarylethenes. J Fluoresc 29, 1311–1320 (2019). https://doi.org/10.1007/s10895-019-02455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02455-4

Keywords

Navigation