Skip to main content
Log in

Spectroscopic, Computational, Antimicrobial, DNA Interaction, In Vitro Anticancer and Molecular Docking Properties of Biochemically Active Cu(II) and Zn(II) Complexes of Pyrimidine-Ligand

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Biochemically active Cu(II) and Zn(II) complexes [CuL(ClO4)2(1) and ZnL(ClO4)2(2)] have been synthesized from N,N donor Schiff base ligand L derived from4,6-dichloropyrimdine-5-carboxaldehyde with 4-(2-aminoethyl)morpholine. The L, complexes 1 and 2 have been structurally characterized by elemental analysis, 1H-NMR, FTIR, MS, UV-Visible and ESR techniques. The results obtained from the spectral studies supports the complexes 1 and 2 are coordinated with L through square planar geometry. DFT calculations results supports, the ligand to metal charge transfer mechanism can occur between L and metal(II) ions. The antimicrobial efficacy results have been recommended that, complexes 1 and 2 are good anti-pathogenic agents than ligand L. The interaction of complexes 1 and 2 with calf thymus (CT) DNA has been studied by electronic absorption, viscometric, fluorometric and cyclic voltammetric measurements. The calculated Kb values for L, complexes 1 and 2 found from absorption titrations was 4.45 × 104, L; 1.92 × 105, 1 and 1.65 × 105, 2. The Ksv values were found to be 3.0 × 103, 3.68 × 103and 3.52 × 103 for L, complexes 1 and 2 by using competitive binding with ethidium bromide (EB). These results suggest that, the compounds are interacted with DNA may be electrostatic binding. The molecular docking studies have been carried out to confirm the interaction of compounds with DNA. Consequently, in vitro anticancer activities of L, complexes 1 and 2 against selected cancer (lung cancer A549, liver cancer HepG2 and cervical carcinoma HeLa) and normal (NHDF) cell lines were assessed by MTT assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  PubMed  CAS  Google Scholar 

  2. Gracia MH, Morais TS, Florindo P, Piedade MFM, Moreno V, Ciudad C, Noe V (2009) Inhibition of cancer cell growth by ruthenium(II) cyclopentadienyl derivative complexes with heteroaromatic ligands. J Inorg Biochem 103:354–361

    Article  CAS  Google Scholar 

  3. Wu CH, Wu DH, Liu X, Guoyiqibayi G, Guo DD, Lv G, Wang XM, Yan H, Jiang H, Lu ZH (2009) Ligand-based neutral ruthenium(II) arene complex: selective anticancer action. Inorg Chem 48:2352–2354

    Article  PubMed  CAS  Google Scholar 

  4. Kim E, Rye PT, Essigmann JM, Croy RG (2009) A bifunctional platinum(II) antitumor agent that forms DNA adducts with affinity for the estrogen receptor. J Inorg Biochem 103:256–261

    Article  PubMed  CAS  Google Scholar 

  5. Shebl M, Adly OMI, El-Shafiy HF, Khalil SME, Taha A, Mahdi MAN (2017) Structural variety of mono- and binuclear transition metal complexes of 3-[(2-hydroxybenzylidene)-hydrazono]-1-(2-hydroxyphenyl)-butan-1-one: Synthesis, spectral, thermal, molecular modeling, antimicrobial and antitumor studies, 1134:649–660

  6. Pravin N, Kumaravel G, Senthilkumar R, Raman N (2017) Water-soluble Schiff base cu(II) and Zn(II) complexes:synthesis, DNA targeting ability and chemotherapeutic potential of cu(II) complex for hepatocellular carcinoma–in vitro and in vivo approach. Appl Organomet Chem 31:e3739. https://doi.org/10.1002/aoc.3739

    Article  CAS  Google Scholar 

  7. Zhu T, Wang Y, Ding W, Xu J, Chen R, Xie J, Zhu W, Jia L, Ma T (2015) Anticancer activity and DNA-binding investigations of the cu(II) and Ni(II) complexes with coumarin derivative. Chem Biol Drug Des 85:385–393

    Article  PubMed  CAS  Google Scholar 

  8. Li Y, Yang Z, Zhou M, He J, Wang X, Wu Y, Wang Z (2017) Syntheses, crystal structures and DNA-binding studies of cu(II) and Zn(II) complexes bearing asymmetrical aroylhydrazone ligand. J Mol Struct 1130:818–828

    Article  CAS  Google Scholar 

  9. Oehninger L, Rubbiania R, Ott I (2013) N-heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans 42:3269–3284

    Article  PubMed  CAS  Google Scholar 

  10. Kumar A, Sinha S, Chauhan PM (2012) Synthesis of novel antimycobacterial combinatorial libraries of structurally diverse substituted pyrimidines by three-component solid phase reactions. Bioorg Med Chem Lett 12:667–669

    Article  Google Scholar 

  11. Baraldi PG, Pavani MG, Nunez M, Brigidi P, Vitali B, Gambari R, Romagnoli R (2002) Antimicrobial and antitumor activity of N-heteroimine-1,2,3-dithiazoles and their transformation in triazolo- imidazo- and pyrazolopyrimidines. Bioorg Med Chem 10:449–456

    Article  PubMed  CAS  Google Scholar 

  12. Nasr MN, Gineinah MM (2002) Pyrido [2,3-d]pyrimidines and pyrimido [50,40:5,6]pyrido[2,3-d]pyrimidines as new antiviral agents: synthesis and biological activity. Arch Pharm 335:289–295

    Article  CAS  Google Scholar 

  13. Sondhi SM, Johar M, Rajvanshi S, Dastidar SG, Shukla R, Raghubir R, Lown JW (2001) Anticancer, anti-inflammatory and analgesic activity evaluation of heterocyclic compounds synthesized by the reaction of 4-isothiocyanato-4-methylpentan-2-one with substituted o-phenylenediamines, o-diaminopyridine and (un)substituted o-diamino pyrimidines. Aust J Chem 54:69–74

    Article  CAS  Google Scholar 

  14. Gangjee A, Vidwans A, Elzein E, McGuire JJ, Queener SF, Kisliuk RL (2001) Synthesis, antifolate and antitumor activities of classical and nonclassical 2-amino-4-oxo-5- substitutedpyrrolo[2,3-d]pyrimidines. J Med Chem 44:1993–2003

    Article  PubMed  CAS  Google Scholar 

  15. Kumar N, Singh G, Yadav AK (2001) Synthesis of some new pyrido[2,3-d]pyrimidines and their ribofuranosides as possible antimicrobial agents. Heteroat Chem 12:52–56

    Article  CAS  Google Scholar 

  16. Herbst RS, Heymach JV, Oreilly MS, Onn A, Ryan A (2007) Vandetanib (ZD6474): an orally available receptor tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert Opin Investig Drugs 16:239–249

    Article  PubMed  CAS  Google Scholar 

  17. Bayrak H, Demirbas A, Karaoglu SA, Demirbas N (2009) Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur J Med Chem 44:1057–1066

    Article  PubMed  CAS  Google Scholar 

  18. Kesavan MP, Vinoth Kumar GG, Dhaveethu Raja J, Anitha K, Karthikeyan S, Rajesh J (2017) DNA interaction, antimicrobial, antioxidant and anticancer studies on cu(II) complexes of Luotonin a. J Photochem Photobiol B 167:20–28

    Article  PubMed  CAS  Google Scholar 

  19. Revathi N, Sankarganesh M, Rajesh J, Dhaveethu Raja J (2017) Biologically active cu(II), co(II), Ni(II) and Zn(II) complexes of pyrimidine derivative Schiff base: DNA binding, antioxidant, antibacterial and in vitro anticancer studies. J Fluoresc 27:1801–1814

    Article  PubMed  CAS  Google Scholar 

  20. Rajesh J, Gubendran A, Rajagopal G, Athappan PR (2012) Synthesis, spectra and DNA interactions of certain mononuclear transition metal(II) complexes of macrocyclic tetraaza diacetyl curcumin ligand. J Mol Struct 1010:169–178

    Article  CAS  Google Scholar 

  21. Perontsis S, Hatzidimitriou AG, Papadopoulos AN, Psomas G (2016) Nickel-diflunisal complexes: synthesis, characterization, in vitro antioxidant activity and interaction with DNA and albumins. J Inorg Biochem 162:9–21

    Article  PubMed  CAS  Google Scholar 

  22. Babu B, Nandhini T, Vaidyanathan VG, Nair BU (2016) Studies on interaction of Cr(III) polypyridyl complexes with DNA. Inorg Chem Commun 73:124–128

    Article  CAS  Google Scholar 

  23. Gubedran A, Kesavan MP, Ayyanaar S, Dhaveethu Raja J, Athappan PR, Rajesh J (2017) Synthesis and characterization of water-soluble copper(II), cobalt(II) and zinc(II) complexes derived from 8-hydroxyquinoline-5-sulphonic acid: DNA binding and cleavage studies. Appl Organomet Chem 31:e3708

    Article  CAS  Google Scholar 

  24. Mahendiran D, Senthil Kumar R, Viswanathan V, Velmurugan D, Rahiman AK (2016) Targeting of DNA molecules, BSA/c-met tyrosine kinase receptors and anti-proliferative activity of bis(terpyridine)copper(ii) complexes. Dalton Trans 45:7794–7814

    Article  PubMed  CAS  Google Scholar 

  25. Galal SA, Hegab KH, Kassab AS, Rodriguez ML, Kerwin SM, El-Khamry AMA, El Diwani HI (2009) New transition metal ion complexes with benzimidazole-5-carboxylic acid hydrazides with antitumor activity. Eur J Med Chem 44:1500–1508

    Article  PubMed  CAS  Google Scholar 

  26. Thati B, Noble A, Creaven BS, Walsh M, McCann M, Devereux M, Kavanagh K, Egan DA (2009) Role of cell cycle events and apoptosis in mediating the anti-cancer activity of a silver(I) complex of 4-hydroxy-3-nitro-coumarin-bis(phenanthroline) in human malignant cancer cells. Eur J Pharmacol 602:203–214

    Article  PubMed  CAS  Google Scholar 

  27. Zhang K, Zhu L, Liu YT, Wu ZY, Yan CW (2015) Synthesis and crystal structure of new dicopper(II) complexes having asymmetric N,N,-bis(substituted)oxamides with DNA/protein binding ability: In vitro anticancer activity and molecular docking studies. J Photochem Photobiol B 149:129–142

    Article  CAS  Google Scholar 

  28. Arun T, Subraminian R, Raman N (2016) Novel bio-essential metal based complexes linked by hetercyclic ligand: synthesis, structural elucidation, biological evaluation and docking analysis. J Photochem Photobiol B 154:67–76

    Article  PubMed  CAS  Google Scholar 

  29. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds, fourth ed., New York

  30. Thomas M, Nair MKM, Radhakrishnan RK (1995) Rare earth iodide complexes of 4-(2′,4′-dihydroxyphenylazo) antipyrine. Synth React Inorg Met-Org Chem nano-Met Chem 25:471–479

    Article  CAS  Google Scholar 

  31. Raman N, Dhaveethu Raja J, Sakthivel A (2008) Template synthesis of novel 14-membered tetraazamacrocyclic transition metal complexes: DNA cleavage and antimicrobial studies. J Chil Chem Soc 53:1568–1571

    CAS  Google Scholar 

  32. Abd-Elzaher MM, Labib AA, Mousa HA, Moustafa SA, Ali MM, El-Rashedy AA (2016) Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni Suef 5:85–96

    Google Scholar 

  33. Raman N, Sakthivel A, Dhaveethu Raja J, Rajesekaran K (2008) Designing, structural elucidation and comparison of the cleavage ability of metal complexes containing tetradentate Schiff bases 1. Russ J Inorg Chem 53:213–219

    Article  Google Scholar 

  34. Dutta RL, Syamol A (1993) Elements of Magnetochemistry, second ed., New Delhi

  35. Gaussian 09, Revision A 02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT, 2009

  36. Sankarganesh M, Adwin Jose P, Dhaveethu Raja J, Kesavan MP, Vadivel M, Rajesh J, Jeyamurugan R, Senthil Kumar R, Karthikeyan S (2017) New pyrimidine based ligand capped gold and platinum nano particles: synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. J Photochem Photobiol B 176:44–53

    Article  PubMed  CAS  Google Scholar 

  37. Liang JW, Wang Y, Du KJ, Li GY, Guan RL, Ji LN, Chao H (2014) Synthesis, DNA interaction and anticancer acitivity of copper(II) complexes with 4′-phenyl-2,2′:6′2″-terpyridine derivatives. J Inorg Biochem 141:17–27

    Article  PubMed  CAS  Google Scholar 

  38. Mathan Kumar S, Kesavan MP, Vinoth Kumar GG, Sankarganesh M, Chakkaravarthi G, Rajagopal G, Rajesh J (2018) New heteroleptic Zn(II) complexes of thiosemicarbazone and diimine co-ligands: structural analysis and their biological impacts. J Mol Struct 1153:1–11

    Article  CAS  Google Scholar 

  39. Li Z, Wang J, Ren T, Zhang L, Shi J, Song C, Wang R, Chang J (2016) Influence of the methyl position on the binding of 5-epitaiwaniaquinone G to HSA investigated by spectrofluorimetry and molecular modeling. Med Chem Res 25:1009–1019

    Article  CAS  Google Scholar 

  40. Sankarganesh M, Rajesh J, Vinoth Kumar GG, Vadivel M, Mitu L, Senthilkumar R, Dhaveethu Raja J (2018) Synthesis, spectral characterization, theoretical, antimicrobial, DNA interaction and in vitro anticancer studies of cu(II) and Zn(II) complexes with pyrimidine-morpholine based Schiff base ligand. J Saudi Chem Soc 22:416–426

    Article  CAS  Google Scholar 

  41. Li Z, Wang Z, Wang N, Han X, Yu W, Wang R, Chang J (2018) Identification of the binding between three fluoronucleoside analogues and fat mass and obesity-associated protein by isothermal titration calorimetry and spectroscopic techniques. J Pharm Biomed Anal 149:290–295

    Article  PubMed  CAS  Google Scholar 

  42. Ren T, Wang Z, Zhang L, Wang N, Han W, Wang R, Chang J (2017) Study of the binding between Camptothecin analogs and FTO by spectroscopy and molecular docking. J Fluoresc 27:1467–1477

    Article  PubMed  CAS  Google Scholar 

  43. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901–8911

    Article  CAS  Google Scholar 

  44. Zhang SS, Niu SY, Qu B, Jie GF, Xu H, Ding CF (2005) Studies on the interaction mechanism between hexakis(imidazole) manganese(II) terephthalate and DNA and preparation of DNA electrochemical sensor. J Inorg Biochem 99:2340–2347

    Article  PubMed  CAS  Google Scholar 

  45. Gaur R, Khan RA, Tabassum S, Shan P, Siddiqi MI, Mishra L (2011) Interactions of a ruthenium(II)-chalcone complex with double stranded DNA: spectroscopic, molecular docking and nuclease properties. J Photochem Photobiol B 220:145–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST)-Science and Engineering Research Board (SERB-Ref.No.: SR/FT/CS-117/2011 dated 29.06.2012), Government of India, New Delhi for the financial support and express their sincere thanks to Managing Board, Dean, Principal, Head and staff members, Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai for providing research facilities..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyaraj Dhaveethu Raja.

Electronic supplementary material

ESM 1

(DOCX 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankarganesh, M., Dhaveethu Raja, J., Adwin Jose, P.R. et al. Spectroscopic, Computational, Antimicrobial, DNA Interaction, In Vitro Anticancer and Molecular Docking Properties of Biochemically Active Cu(II) and Zn(II) Complexes of Pyrimidine-Ligand. J Fluoresc 28, 975–985 (2018). https://doi.org/10.1007/s10895-018-2261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2261-0

Keywords

Navigation