Skip to main content
Log in

Synthesis of Fluorescent 1-(3-Amino-4-(4-(tert-butyl)phenyl)−6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one: Crystal Structure, Fluorescence Behavior, Antimicrobial and Antioxidant Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N—H…O, H2C—H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rodriguez AL, Williams R, Zhou Y, Lindsley SR, Le U, Grier MD, David Weaver C, Jeffrey Conn P, Lindsley CW (2009) Discovery and SAR of novel mGluR5 non-competitive antagonists not based on an MPEP chemotype. Bioorg Med Chem Lett 19:3209–3213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Eren G, Ünlü S, Nuñez M-T, Labeaga L, Ledo F, Entrena A, Banoğlu E, Costantino G, Şahin MF (2010) Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg Med Chem 18:6367–6376

    Article  PubMed  CAS  Google Scholar 

  3. Naresh Kumar R, Poornachandra Y, Nagender P, Mallareddy G, Ravi Kumar N, Ranjithreddy P, Ganesh Kumar C, Narsaiah B (2016) Synthesis of novel trifluoromethyl substituted furo[2,3-b]pyridine and pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine derivatives as potential anticancer agents. Eur J Med Chem 108:68–78

    Article  PubMed  CAS  Google Scholar 

  4. Kawakami K, Takahashi H, Ohki H, Kimura K, Miyauchi S, Miyauchi R, Takemura M (2000) Studies on 8-methoxyquinolones: synthesis and antibacterial activity of 7-(3-amino-4-substituted)pyrrolidinyl derivatives. Chem Pharm Bull 48:1667–1672

    Article  PubMed  CAS  Google Scholar 

  5. Ledoussal B, Bouzard D, Coroneos E (1992) Potent non-6-fluoro-substituted quinolone antibacterials: synthesis and biological activity. J Med Chem 35:198–200

    Article  PubMed  CAS  Google Scholar 

  6. Kotb ER, Soliman HA, Morsy EMH, Abdelwahed NAM (2017) New pyridine and triazolopyridine derivatives: synthesis, antimicrobial and antioxidant evaluation. Acta Pol Pharm 47:861–872

    Google Scholar 

  7. Hu Y, Zhang J, Yu C, Li Q, Dong F, Wang G, Guo Z (2014) Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. Int J Biol Macromol 70:44–49

    Article  PubMed  CAS  Google Scholar 

  8. Venkatesh T, Bodke YD, Kenchappa R, Telkar S (2016) Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med Chem (Los Angeles) 6:440–448

    Article  CAS  Google Scholar 

  9. Avşar C, Özler H, Berber İ, Civek S (2016) Phenolic composition, antimicrobial and antioxidant activity of Castanea sativa Mill. pollen grains from Black Sea region of Turkey. Int Food Res J 23:1711–1716

    Google Scholar 

  10. Dzoyem JP, Melong R, Tsamo AT, Tchinda AT, Kapche DGWF, Ngadjui BT, McGaw LJ, Eloff JN (2017) Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Res Notes 10:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jo S-C, Nam K-C, Min B-R, Ahn D-U, Cho S-H, Park W-P, Lee S-C (2006) Antioxidant activity of Prunus mume extract in cooked chicken breast meat. Int J Food Sci Technol 41:15–19

    Article  CAS  Google Scholar 

  12. Akinmoladun AC, Ibukun EO, Afor E, Obuotor EM, Farombi EO (2007) Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Sci Res Essays 2:163–166

    Google Scholar 

  13. Liu W, Fu Y-J, Zu Y-G, Tong M-H, Wu N, Liu X-L, Zhang S (2009) Supercritical carbon dioxide extraction of seed oil from Opuntia Dillenii Haw and its antioxidant activity. Food Chem 114:334–339

    Article  CAS  Google Scholar 

  14. Al-Refai M (2015) Synthesis, characterization and biological evaluation of new 4-Aryl-6-(2,5-dichlorothiophen-3-yl)-1,2-dihydro-2-oxopyridine-3-carbonitrile. Asian J Chem 27:725–728

    Article  CAS  Google Scholar 

  15. Ibrahim MM (2015) One-pot synthesis, characterization and antimicrobial activity of new 3-cyano-4-alkyl-6-(2,5-dichlorothiophen-3-yl)-2(1H)-pyridones. Jordan J Chem 10:98–107

    Article  CAS  Google Scholar 

  16. Stoe & Cie (2016) X-Area LANA. Stoe & Cie GmbH, Darmstadt, Germany

  17. Sheldrick GM (2014) SHELXT - Integrated space-group and crystal-structure determination. Universität Göttingen, Göttingen, Germany

  18. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  19. Stoe & Cie (2016) X-Area Pilatus3_SV, in, Stoe & Cie GmbH, Darmstadt, Germany

  20. Stoe & Cie (2015) X-Area Recipe. Stoe & Cie GmbH, Darmstadt, Germany

  21. Stoe & Cie (2016) X-Area Integrate. Stoe & Cie GmbH, Darmstadt, Germany

  22. Putz H, Brandenburg K (2014) Diamond - crystal and molecular structure visualization. Crystal Impact, Bonn, Germany

  23. Hübschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 44:1281–1284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ayoola GA, Folawewo AD, Adesegun SA, Abioro OO, Adepoju-Bello AA, Coker HAB (2008) Phytochemical and antioxidant screening of some plants of apocynaceae from South West Nigeria. African J Plant Sci 2:124–128

    Google Scholar 

  25. Jotani MM, Patel UH, Shah HC (2006) Ethyl 3-Amino-6-phenyl-4-tolylfuro[2,3-b]pyridine-2-carboxylate. Acta Cryst E62:o4906–o4908

    Google Scholar 

  26. Vrabel V, Svorc L, Bradiakova I, Kozisek J, Krutosikova A (2007) 2-[3-(Trifluoromethyl)phenyl]furo[2,3-c]pyridine. Acta Cryst E63:o4516

    Google Scholar 

  27. Garudachari B, Islor AM, Vijesh AM, Gerber T, Hosten E, Betz R (2012) Ethyl 3-(2-ethoxy-2-oxoethoxy)-6-(trifluoromethyl)furo[3,2-c]quinoline-2-carboxylate. Acta Cryst E68:o3389–o3390

    Google Scholar 

  28. Chen D-Q, Tu S-J (2007) 3-Methyl-1,4-diphenyl-1H,5H,7H-furo[3,4-b]pyrazolo[4,3-e]pyridin-5-one. Acta Cryst E63:o1777–o1778

    Google Scholar 

  29. Rybakov VB, Babaev EV, Paronikyan EG (2017) X-ray mapping in heterocyclic design: 18. X-ray diffraction study of a series of derivatives of 3-cyanopyridine-2-one with annelated heptane and octane cycles. Crystallogr Rep 62:219–231

    Article  CAS  Google Scholar 

  30. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Eng 34:1555–1573

    Article  CAS  Google Scholar 

  31. Lechel T, Dash J, Brüdgam I, Reißig H-U (2008) Novel furo-pyridine derivatives via Sonogashira Reactions of functionalized pyridines. Eur J Org Chem 2008:3647–3655

    Article  Google Scholar 

  32. Lechel T, Dash J, Eidamshaus C, Brudgam I, Lentz D, Reissig H-U (2010) A three-component synthesis of [b]-alkoxy-[b]-keto-enamides-flexible precursors for 4-hydroxypyridine derivatives and their palladium-catalysed reactions. Org Biomol Chem 8:3007–3014

    Article  PubMed  CAS  Google Scholar 

  33. Al-Ansari IAZ (2016) Effects of structure and environment on the spectroscopic properties of (3-amino-substituted-thieno[2,3-b] pyridine-2-yl)pyridine/quinolin-2-yl)(phenyl)methanones: experimental and theoretical study. J Fluoresc 26:821–834

Download references

Acknowledgements

The authors are grateful to Al Al-Bayt University (Mafraq, Jordan). The authors would like also to thank Professor Read Ghanem for his help in running the UV-visible spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Ibrahim.

Electronic supplementary material

ESM 1

CCDC 1816780 contains crystallographic data for compound III. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/getstructures, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (44) 1223–336,033; or e-mail: deposit@ccdc.cam.ac.uk. (DOCX 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.M., Al-Refai, M., Al-Fawwaz, A. et al. Synthesis of Fluorescent 1-(3-Amino-4-(4-(tert-butyl)phenyl)−6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one: Crystal Structure, Fluorescence Behavior, Antimicrobial and Antioxidant Studies. J Fluoresc 28, 655–662 (2018). https://doi.org/10.1007/s10895-018-2227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2227-2

Keywords

Navigation