Skip to main content
Log in

Studies on Structural, Optical, Thermal and Electrical Properties of Perylene-Doped p-terphenyl Luminophors

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV–Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity. The SEM micrograph of pure p-terphenyl exhibit flakes like grains and then compact and finally gets separately with perylene amounts. The observed results indicate that closed packed crystal structures of doped p-terphenyl during crystal formation. The band gaps estimated from UV–visible spectroscopy decreased from 5.20 to 4.10 eV, while thermo-electrical conductivity increases with perylene content. The fluorescence spectra showed partial quenching of p-terphenyl fluorescence and simultaneously sensitization of perylene fluorescence at the excitation wavelength of p-terphenyl (290 nm) due to excitation energy transfer from p-terphenyl to perylene. The observed sensitization results are in harmony with intense blue color seen in fluorescence microscopy images and has high demand in scintillation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Makoto N, Ishihara S (2013) Magnetoelectric effect in organic molecular solids. Sci Rep 6:1

    Google Scholar 

  2. Imoto M, Ikeda H, Fujii T, Taniguchi H, Tamaki A, Takeda M, Mizuno K (2010) Contrasting intermolecular and intramolecular exciplex formation of a 1,4-Dicyano-2-methylnaphthalene−N,N-Dimethyl-p-toluidine dyad. Org Lett 12:1940

    Article  CAS  PubMed  Google Scholar 

  3. Sakai A, Ohta E, Yoshimoto Y, Tanaka M, Matsui Y, Mizuno K, Ikeda H (2015) New fluorescence domain “excited multimer” formed upon photoexcitation of continuously stacked diaroylmethanatoboron difluoride molecules with fused π-orbitals in crystals. Chem Eur J 20:18128

    Article  Google Scholar 

  4. Yersin H (2009) Highly efficiency OLEDs with phosphorescent materials. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin

    Google Scholar 

  5. Macovez R, Mitsari E, Zachariah M, Romanini M, Zygouri P, Gournis D, Tamarit J (2014) Hopping conductivity and polarization effects in a fullerene derivative salt. J Phys Chem C 118:4941

    Article  CAS  Google Scholar 

  6. Mahajan PG, Kolekar GB, Patil SR (2017) Fluorescence-based logic gate for sensing of Ca2+ and F ions using PVP crowned chrysene nanoparticles in aqueous medium. Luminescence. https://doi.org/10.1002/bio.3262

    PubMed  Google Scholar 

  7. Liu D, Huicai R, Jiuyan L, Qiun T, Zhanxian G (2009) Novel perylene bisimide derivative with fluorinated shell: a multifunctional material for use in optoelectronic devices. Chem Phy Lett 482:72

    Article  CAS  Google Scholar 

  8. Chena J, LeBoeuf EJ, Daic S, Gua B (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50:639

  9. Loudwig S, Bayley H (2006) Photoisomerization of an individual azobenzene molecule in water: an on−off switch triggered by light at a fixed wavelength. J Am Chem Soc 128:12404

    Article  CAS  PubMed  Google Scholar 

  10. Gawrys P, Marszalek T, Bartnik E, Kucinska M, Ulanski J, Zagorska M (2011) Novel, low-cost, highly soluble n-type semiconductors: tetraazaanthracene tetraesters. Org Lett 13:6090

    Article  CAS  PubMed  Google Scholar 

  11. Desai NK, Kolekar GB, Patil SR (2014) Off–on fluorescent polyanthracene for recognition of ferric and fluoride ions in aqueous acidic media: application in pharmaceutical and environmental analysis. New J Chem 8:4394

    Article  Google Scholar 

  12. Desai NK, Kolekar GB, Patil SR (2012) Preparation and characterization of anthracene doped p-terphenyl polycrystalline powders for scintillation application. Int J Lumin Appl 2:1

    Google Scholar 

  13. Lim JT, Kwon JW, Yeom GY (2011) Enhanced driving performance of organic light-emitting diodes with all carrier ohmic-contacts. J Electrochem Soc 128:10

    Article  Google Scholar 

  14. Wang H, Yang Z, Xie Z, Wang H, Wang B, Ma Y (2014) The thermodynamic characteristics of organic crystal growth by physical vapor transport: towards high-quality and color-tunable crystal preparation. Cryst Eng Comm 16:4539

    Article  CAS  Google Scholar 

  15. Ravi G, Srinivasan K, Anbukumar S, Ramasamy P (1994) Growth and characterization of sulphate mixed L-arginine phosphate and ammonium dihydrogen phosphate/potassium dihydrogen phosphate mixed crystals. J Cryst Growth 137:598

    Article  CAS  Google Scholar 

  16. Desai NK, Mahajan PG, Kumbhar AS, Kolekar GB, Patil SR (2016) Nanoporous p-terphenyl-polystyrene films containing perylene; fabrication, characterization and remarkable fluorescence resonance energy transfer based blue emitting properties. J Mater Sci Mater Electron 27:1118

    Article  CAS  Google Scholar 

  17. Desai RR, Lakhminarayana D, Patel PB, Panchal CJ (2002) Electrical and optical properties of Indium sesquitelluride (In2Te3) thin films. J Mater Sci 41:2019

    Article  Google Scholar 

  18. Patil SR, Patwari SB (1999) Red shift in fluorescence of naphthalene doped by anthracene and perylene. J Lumin 82:115

    Article  CAS  Google Scholar 

  19. Desai NK, Gupta MK, Kolekar GB, Patil SR (2013) Fluorescence enhancement effect in pyrene and perylene doped nanoporous polystyrene films: mechanistic and morphology. Phys Status Solidi A 210:2121

    Article  CAS  Google Scholar 

  20. Mitsui M, Kawano Y (2013) Electronic energy transfer in tetracene-doped p-terphenyl nanoparticles: extraordinarily high fluorescence enhancement and quenching. Chem Phys 419:30

    Article  CAS  Google Scholar 

  21. Masuko M, Ohuchi S, Sode K, Ohtani H, Shimadzu A (2000) Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions. Nucl Acids Res 28:1

    Article  Google Scholar 

  22. Wang X, Lau KC, Li WK (2011) Doping effects on structural and electronic properties of ladderanes and ladder polysilanes: a density functional theory investigation. J Phys Chem A 115:7656

    Article  CAS  PubMed  Google Scholar 

  23. Jones W, Thomas JM, Williams JO, Hobbs LW (1975) Electron microscopic studies of extended defects in organic molecular crystals. Part 1.—p-Terphenyl. J Chem Soc Faraday Trans 71:138  

  24. Patwari SB, Baseer MA, Vartale SR, Patil SR (2002) X-ray diffraction study of organic mixed crystals. Asian J Chem 14:57

    CAS  Google Scholar 

  25. Ansari R, Keivani MB (2006) Polyaniline conducting electroactive polymers thermal and environmental stability studies. E-J Chem 3:202

    Article  CAS  Google Scholar 

  26. Pujari SR, Kamble MD, Bhosale PN, Rao PMR, Patil SR (2002) Optical properties of pyrene doped polymer thin films. Mater Res Bull 37:1641

    Article  CAS  Google Scholar 

  27. Salunkhe MM, Kharade RR, Kharade SD, Mali SS, Patil PS, Bhosale PN (2012) Synthesis of fibrous reticulate nanocrystalline n-type MoBi2(Se1−xTex)5 thin films: thermocooling applications. Mater Res Bull 47:3860

    Article  CAS  Google Scholar 

  28. Pujari SR, Bhosale PN, Rao PMR, Patil SR (2002) Sensitized monomer fluorescence and excitation energy transfer in perlyene-doped phenanthrene in crystalline and polymer matrix. Mater Res Bull 37:439

    Article  CAS  Google Scholar 

  29. Zhipeng C, Qisheng S, Mengxing S, Xiaojing J, Shengchun Q, Yuhua W (2014) Structure, photoluminescence and thermal properties of Ce3+, Mn2+ co-doped phosphosilicate Sr7La3[(PO4)2.5(SiO4)3(BO4)0.5](BO2) emission-tunable phosphor. J Mater Chem C 2:5850

    Article  Google Scholar 

Download references

Acknowledgements

One of the author, NKD acknowledge Department of Science and Technology and University Grants Commission, New Delhi, for providing grants to the Department of Chemistry, Shivaji University, Kolhapur, under FIST and SAP programs, respectively. Also authors thanks to Prof. P. S. Patil (Department of Physics) and Prof. P. N. Bhosale, Prof. G. M. Gardkar, Prof. S. S. Kolekar, (Department of Chemistry) Shivaji University, Kolhapur for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Netaji K. Desai or Shivajirao R. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, N.K., Mahajan, P.G., Bhopate, D.P. et al. Studies on Structural, Optical, Thermal and Electrical Properties of Perylene-Doped p-terphenyl Luminophors. J Fluoresc 28, 51–63 (2018). https://doi.org/10.1007/s10895-017-2172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2172-5

Keywords

Navigation