Skip to main content

Advertisement

Log in

Photochemical Degradation of Curcumin: a Mechanism for Aqueous Based Sensing of Fluoride

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present work describes the enhanced photochemical degradation of natural dye Curcumin in acetonitrile–water mixture in the presence of fluoride upon irradiation with light. The strong basicity of fluoride modifies the solvent environment around Curcumin molecule leading to alkaline mediated degradation of Curcumin which is further accelerated by irradiation with light. The photochemical degradation of Curcumin is studied using absorption and fluorescence spectroscopy and verified using infrared spectroscopy and fluorescence lifetime studies. The results of the work indicate that the method of Curcumin irradiation can be used as a sensing technique for fluoride detection in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Valente NIP, Muteto PV, Farinha ASF, Tomé AC, Oliveira JABP, Gomes MTSR (2011) An acoustic wave sensor for the hydrophilic fluoride. Sens Actuators B 157(2):594–599

    Article  CAS  Google Scholar 

  2. Tang L, Wang N, Guo J (2012) Colorimetric and fluorescent recognition of fluoride by a binaphthol thioureido derivative. Bull Korean Chem Soc 33(7):2145–2148

    Article  CAS  Google Scholar 

  3. Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36(6):433–487

    Article  CAS  Google Scholar 

  4. Cametti M, Rissanen K (2009) Recognition and sensing of fluoride anion. Chem Commun 20:2809–2829

    Article  Google Scholar 

  5. Shiraishi Y, Maehara H, Sugii T, Wang D, Hirai T (2009) A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Lett 50(29):4293–4296

    Article  CAS  Google Scholar 

  6. Choi BH, Lee JH, Hwang H, Lee KM, Park MH (2016) Novel dimeric o-carboranyl triarylborane intriguing ratiometric color-tunable sensor via aggregation-induced emission by fluoride anions. Organometallics 35(11): 1771–1777

    Article  CAS  Google Scholar 

  7. Watanabe S, Seguchi H, Yoshida K, Kifune K, Tadaki T, Shiozaki H (2005) Colorimetric detection of fluoride ion in an aqueous solution using a thioglucose-capped gold nanoparticle. Tetrahedron Lett 46(51): 8827–8829

    Article  CAS  Google Scholar 

  8. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the indian solid gold. Adv Exp Med Biol 595:1–75

    Article  PubMed  Google Scholar 

  9. Lee BH, Choi HA, Kim MR, Hong J (2013) Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Sci Biotechnol 22(1): 279–282

    Article  CAS  Google Scholar 

  10. Patra D, Barakat C (2011) Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochim Acta A 79:1034–1041

    Article  CAS  Google Scholar 

  11. Kee TW, Adhikary R, Carlson PJ, Mukherjee P, Petrich JW (2011) Femtosecond fluorescence upconversion investigations on the excited-state photophysics of curcumin. Aust J Chem 64:23–30

    Article  CAS  Google Scholar 

  12. Indira Priyadarsini K (2009) Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C 10:81–95

    Article  Google Scholar 

  13. Erez Y, Presiado I, Gepshtein R, Huppert D (2011) Temperature dependence of the fluorescence properties of curcumin. J Phys Chem A 115:10962–10971

    Article  CAS  PubMed  Google Scholar 

  14. Pill-Hoon B (2000) Spectral and photophysical behaviors of curcumin and curcuminoids. Bull Korean Chem Soc 21(1): 81–86

    Google Scholar 

  15. Tønnesen HH, Karlsen J, van Henegouwen GB (1986) Studies on curcumin and curcuminoids VIII. Photochemical stability of curcumin. Z Lebensm Unters Forsch 183(2): 116–122

    Article  PubMed  Google Scholar 

  16. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12): 1867–1876

    Article  CAS  PubMed  Google Scholar 

  17. Jagannathan R, Abraham PM, Poddar P (2012) Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability. J Phys Chem B 116(50):14533–14540

    Article  CAS  PubMed  Google Scholar 

  18. Wu FY, Sun MZ, Xiang YL, Wu YM, Tong DQ (2010) Curcumin as a colorimetric and fluorescent chemosensor for selective recognition of fluoride ion. J Lumin 130(2):304–308

    Article  CAS  Google Scholar 

  19. Kumavat SD, Chaudhari YS, Borole P, Mishra P, Shenghani K, Duvvuri P (2013) Degradation studies of curcumin. Int J Pharm Rev Res 3(2): 50–55

    Google Scholar 

  20. Gordon ON, Luis PB, Sintim HO, Schneider C (2015) Unraveling curcumin degradation-autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J Biol Chem 290(8):4817–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao JH, Huang YS, Lin YC, Huang FY, Wu SH, Wu TH (2016) Anticataractogenesis mechanisms of curcumin and a comparison of its degradation products: an in vitro study. J Agric Food Chem 64(10): 2080–2086

    Article  CAS  PubMed  Google Scholar 

  22. Yi Q, Qu S, Yang L, Hua J, Qu D (2012) A red-emission diketopyrrolopyrrole-based fluoride ion chemosensor with high contrast ratio working in a dual mode: solvent-dependent ratiometric and “turn on” pathways. Sens Actuators B 173:225–233

    Article  Google Scholar 

  23. Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-raman spectroscopy. Vib Spectrosc 62:77–84

    Article  CAS  Google Scholar 

  24. Puneet P, Vedarajan R, Matsumi N (2016) Alternating poly (borosiloxane) for solid state ultrasensitivity toward fluoride ions in aqueous media. ACS Sensors 1(10): 1198–1202

    Article  CAS  Google Scholar 

  25. Melo LB, Rodrigues JMM, Farinha ASF, Marques CA, Bilro L, Alberto N, Tomé JPC, Nogueira RN (2014) Concentration sensor based on a tilted fiber bragg grating for anions monitoring. Opt Fiber Technol 20(4): 422–427

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges Kerala State Council for Science, Technology & Environment (KSCSTE) for financial assistance in the form of a research fellowship. STIC India is also acknowledged for the FTIR analysis of the samples. The first author also thanks the discussions with Mr. Arindam Sarkar, Mr. Sony Udayan, Mr Mathew S and Ms. Alina C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roopa Venkataraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataraj, R., Girijavallabhan, C.P., Radhakrishnan, P. et al. Photochemical Degradation of Curcumin: a Mechanism for Aqueous Based Sensing of Fluoride. J Fluoresc 27, 2169–2176 (2017). https://doi.org/10.1007/s10895-017-2156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2156-5

Keywords

Navigation