Skip to main content
Log in

Analytical Techniques Used to Detect DNA Binding Modes of Ruthenium(II) Complexes with Extended Phenanthroline Ring

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This review describes the analytical techniques used to detect DNA-probes such as Ru(II) complexes with hetero cyclic imidazo phenanthroline (IP) ligands. Studies on drug-DNA interactions are useful biochemical techniques for visualization of DNA both in vitro and in vivo. The interactions of small molecules that binds to DNA are mainly classified into two major classes, one involving covalent binding and another non-covalent binding. Covalent binding in DNA can be irreversible and may leads to inhibition of all DNA processes which subsequently leads to cell death. Usually, covalent interactions leads to permanent changes in the structure of nucleic acids. The non-covalent interaction of molecules with DNA can be due to electrostatic interaction, intercalation and groove binding. These interactions of DNA probes can be explored by various spectroscopic techniques viz. UV–visible, emission, emission quenching spectroscopy, viscosity and thermal denaturation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Young DW (1975) Heterocyclic chemistry. Longman, London

    Google Scholar 

  2. Kumar A, Kumar R (2011) A review on synthesis of Schiff’s bases of 2-amino 4-phenyl thiazole. Int Res J Pharm 2: 11–12

    CAS  Google Scholar 

  3. Patel NB, Shaikh FM (2010) New 4-thiazolidinones of nicotinic acid with 2-amino-6-methylbenzothiazole and their biological activity. Sci Pharm 78: 753–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bala S, Kamboj S, Kumar A (2010) Heterocyclic 1, 3, 4-oxadiazole compounds with diverse biological activities: a comprehensive review. J Pharm Res 3:2993–2997

    CAS  Google Scholar 

  5. Nagababu P, Barui AK, Thulasiram B, Devi CS, Satyanarayana S, Patra CR, Sreedhar B (2015) Antiangiogenic activity of mononuclear copper (II) polypyridyl complexes for the treatment of cancers. J Med Chem 58:5226–5241

    Article  CAS  PubMed  Google Scholar 

  6. Storr T, Thompson KH, Orvig C (2006) Design of targeting ligands in medicinal inorganic chemistry. Chem Soc Rev 35:534–544

    Article  CAS  PubMed  Google Scholar 

  7. Incesu Z, Bljnkli K, Akalin G, Gundogdukaraburu N (2013) The effects of some phenanthroline ruthenium (Ii) complexes on A549 cell proliferation. Turk J Pharm Sci 10:193–203

    CAS  Google Scholar 

  8. Devi CS, Satyanarayana S (2012) Review: synthesis, characterization, and DNA-binding properties of Ru (II) molecular “light switch” complexes. J Coord Chem 65:474–486

    Article  CAS  Google Scholar 

  9. Devi CS, Nagababu P, Natarajan S, Deepika N, Reddy PV, Veerababu N, Singh SS, Satyanarayana S (2014) Cellular uptake, cytotoxicity, apoptosis and DNA-binding investigations of Ru (II) complexes. Eur J Med Chem 72:160–169

    Article  Google Scholar 

  10. Berners-Price SJ, Appleton TG, Kelland LR (2000) The chemistry of Cisplatin in aqueous solution. In: Kelland LR, Farrell NP (eds) Platinum-based drugs in cancer therapy. Humana Press, Totowa, pp 3–35

  11. Chaires JB (1998) Drug-DNA interactions. Curr Opin Struct Biol 8:314–320

    Article  CAS  PubMed  Google Scholar 

  12. Jakupec MA, Galanski M, Keppler BK (2003) Tumour-inhibiting platinum complexes-state of the art and future perspectives. Rev Physiol Biochem Pharmacol 146:1–53

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt CE, Möller J, Hesslau U, Bauer M, Gabbert T, Kremer B (2005) Universitätskliniken im Spannungsfeld des Krankenhausmarktes. Anaesthesist 54:694–702

    Article  CAS  PubMed  Google Scholar 

  14. Thulasiram B, Kumar YP, Aerva RR, Satyanarayana S, Nagababu P (2017) Correlation between molecular modelling and spectroscopic techniques in investigation with DNA binding interaction of ruthenium (ii) complexes. J Fluoresc 27:587–594

    Article  CAS  PubMed  Google Scholar 

  15. Mattes WB, Hartley JA, Kohn KW (1986) DNA sequence selectivity of guanine–N7 alkylation by nitrogen mustards. Nucleic Acid Res 14:2971–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurley LH, Petrusek R (1979) Proposed structure of the anthramycin–DNA adduct. Nature 282:529–531

    Article  CAS  PubMed  Google Scholar 

  17. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18IN13–30IN14

    Article  Google Scholar 

  18. Boger DL, Winston CT (2001) Thiazole orange as the fluorescent intercalator in a high resolution fid assay for determining DNA binding affinity and sequence selectivity of small molecules. Bioorg Med Chem 9:2511–2518

    Article  CAS  PubMed  Google Scholar 

  19. Tse WC, Boger DL (2004) A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc Chem Res 37:61–69

    Article  CAS  PubMed  Google Scholar 

  20. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  CAS  PubMed  Google Scholar 

  21. Crawford LV, Waring MJ (1967) Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J Mol Biol 25:23–30

    Article  CAS  PubMed  Google Scholar 

  22. Takenaka S, Takagi M (1999) Threading intercalators as a new DNA structural probe. Bull Chem Soc Jpn 72:327–337

    Article  CAS  Google Scholar 

  23. Wilson K, Walker J (2010) Principles and techniques of biochemistry and molecular biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Spiro TG (1980) Nucleic acid-metal ion interactions. Krieger Pub Co

  25. Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23:271–273

    Article  CAS  Google Scholar 

  26. Joseph S, David WR (2001) Molecular cloning: a laboratory manual. Gold Spring Harbor, New York

    Google Scholar 

  27. Morgan RJ, Chatterjee S, Baker AD, Strekas TC (1991) Effects of ligand planarity and peripheral charge on intercalative binding of Ru (2, 2′-bipyridine) 2L2 + to calf thymus DNA. Inorg Chem 30:2687–2692

    Article  CAS  Google Scholar 

  28. Tysoe SA, Morgan RJ, Baker AD, Strekas TC (1993) Spectroscopic investigation of differential binding modes of ∆-and Λ-Ru (bpy) 2 (ppz) 2 + with calf thymus DNA. J Phy Chem 97:1707–1711

    Article  CAS  Google Scholar 

  29. Devi CS, Nagababu P, Shilpa M, Kumar YP, Reddy MR, Gabra NM, Satyanarayana S (2012) Synthesis, characterization and DNA-binding characteristics of Ru (II) molecular light switch complexes. J Iran Chem Soc 9:671–680

    Article  Google Scholar 

  30. Srishailam A, Kumar YP, Reddy PV, Nambigari N, Vuruputuri U, Singh SS, Satyanarayana S (2014) Cellular uptake, cytotoxicity, apoptosis, DNA-binding, photocleavage and molecular docking studies of ruthenium (II) polypyridyl complexes. J Photochem Photobiol B Biol 132: 111–23

    Article  CAS  Google Scholar 

  31. Nagababu P, Shilpa M, Latha JN, Bhatnagar I, Srinivas PN, Kumar YP, Reddy KL, Satyanarayana S (2011) Synthesis, characterization, DNA binding properties, fluorescence studies and toxic activity of cobalt (III) and ruthenium (II) polypyridyl complexes. J Fluoresc 21:563–572

    Article  CAS  PubMed  Google Scholar 

  32. Nagababu PE, Shilpa MY, Mustafa MD, Ramjee P, Satyanarayana S (2008) DNA-binding and photocleavage studies of ethylenediamine cobalt (III) and ruthenium (II) mixed ligand complexes. Inorg React Mech 6: 301–11

    CAS  Google Scholar 

  33. Nagababu P, Latha J, Satyanarayana S (2006) DNA-binding studies of mixed-ligand (Ethylenediamine) ruthenium (II) complexes. Chem Biodivers 3:1219–1229

    Article  CAS  PubMed  Google Scholar 

  34. Tan LF, Chao H, Li H, Liu YJ, sun B, Wei W, Ji LN (2005) Synthesis, characterization, DNA-binding and photocleavage studies of [Ru (bpy) 2 (PPIP)] 2 + and [Ru (phen) 2 (PPIP)] 2+. J Inorg Biochem 99:513–520

    Article  CAS  PubMed  Google Scholar 

  35. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Trans-dichlorobis(N-p-tolylpyridin-2-amine)palladium(II): synthesis, structure, fluorescence features and DNA binding. J Am Chem Soc 111:3051–3058

    Article  CAS  Google Scholar 

  36. Wolfe A, Shimer GH Jr, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. BioChemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  37. Joseph R, Lakowicz GW (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. BioChemistry 12:4161–4170

    Article  Google Scholar 

  38. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489

    Article  CAS  PubMed  Google Scholar 

  39. Kumar CV, Barton JK, Turro NJ (1985) Photophysics of ruthenium complexes bound to double helical DNA. J Am Chem Soc 107:5518–5523

    Article  CAS  Google Scholar 

  40. Barton JK, Goldberg JM, Kumar CV, Turro NJ (1986) Tris (phenanthroline) ruthenium (II) enantiomers with nucleic. J Am Chem Soc 108:2081–2088

    Article  CAS  Google Scholar 

  41. Ghosh BK, Chakravorty A (1989) Electrochemical studies of ruthenium compounds part I. Ligand oxidation levels. Coord Chem Rev 95:239–294

    Article  CAS  Google Scholar 

  42. Fisher MP, Dingman CW (1971) Role of molecular conformation in determining the electrophoretic properties of polynucleotides in agarose-acrylamide composite gels. BioChemistry 10:1895–1899

    Article  CAS  PubMed  Google Scholar 

  43. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta 269:192–200

    Article  CAS  PubMed  Google Scholar 

  44. Sharp PA, Sugden B, Sambrook J (1973) Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. BioChemistry 12:3055–3063

    Article  CAS  PubMed  Google Scholar 

  45. Neyhart GA, Grover N, Smith SR, Kalsbeck WA, Fairley TA, Cory M, Thorp HH (1993) Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV). J Am Chem Soc 115:4423–4428

    Article  CAS  Google Scholar 

  46. Liu YJ, Chao H, Tan LF, Yuan YX, Wei W, Ji LN (2005) Interaction of polypyridyl ruthenium (II) complex containing asymmetric ligand with DNA. J Inorg Biochem 99:530–537

    Article  CAS  PubMed  Google Scholar 

  47. McGhee JD (1976) Theoretical calculations of the helix–coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15:1345–1375

    Article  CAS  PubMed  Google Scholar 

  48. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither delta-nor lambda-tris (phenanthroline) ruthenium (II) binds to DNA by classical intercalation. BioChemistry 31:9319–9324

    Article  CAS  PubMed  Google Scholar 

  49. Barton JK, Danishefsky A, Goldberg J (1984) Tris (phenanthroline) ruthenium (II): stereoselectivity in binding to DNA. J Am Chem Soc 106:2172–2176

    Article  CAS  Google Scholar 

  50. Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Tris (phenanthroline) ruthenium (II) enantiomer interactions with DNA: mode and specificity of binding. BioChemistry 32:2573–2584

    Article  CAS  PubMed  Google Scholar 

  51. Chaires JB, Dattagupta N, Crothers DM (1982) Self-association of daunomycin. BioChemistry 21:3927–3932

    Article  CAS  PubMed  Google Scholar 

  52. Cohen G, Eisenberg H (1969) Viscosity and sedimentation study of sonicated DNA–proflavine complexes. Biopolymers 8:45–55

    Article  CAS  Google Scholar 

  53. Stevenson P, Sones KR, Gicheru MM, Mwangi EK (1995) Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya. Acta Trop 59:77–84

    Article  CAS  PubMed  Google Scholar 

  54. Olmsted J III, Kearns DR (1977) Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. BioChemistry 16:3647–3654

    Article  CAS  PubMed  Google Scholar 

  55. Kundu S, Maity S, Bhadra R, Ghosh P (2011) Trans-dichlorobis(N-p-tolylpyridin-2-amine)palladium(II): synthesis, structure, fluorescence features and DNA binding. Indian J Chem 50: 1443–9

    Google Scholar 

Download references

Acknowledgements

This work was supported by CSIR-NEERI/KZC and IICT Hyderabad, KRC No.: CSIR-NEERI/KRC/2017/MAR/KZL/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penumaka Nagababu.

Additional information

C.S. Devi and Penumaka Nagababu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, C.S., Thulasiram, B., Satyanarayana, S. et al. Analytical Techniques Used to Detect DNA Binding Modes of Ruthenium(II) Complexes with Extended Phenanthroline Ring. J Fluoresc 27, 2119–2130 (2017). https://doi.org/10.1007/s10895-017-2151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2151-x

Keywords

Navigation