Skip to main content
Log in

Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro-Pyrrolo[3,4-d]Pyridazine-1,4-Dione Scaffolds

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two chemiluminescent compounds containing 2,5-di(thien-2-yl)pyrrole and pyridazine units, namely 5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (5) and 6-phenyl-5,7-di(thiophen-2-yl)-2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione (6), were successfully synthesized and electrochemically polymerized. The compounds have chemiluminescent properties and glow in the presence of hydrogen peroxide in basic medium. The intensity of the glow can be increased dramatically by using Fe3+ ions, hemin (1.0 ppm) or blood samples (1.0 ppm) as catalyst. The compounds 5 and 6 have one well-defined irreversible oxidation peak at 1.08 V and 1.33 V vs Ag/AgCl, respectively. Electrochemical polymerization of both 5 and 6 were carried out successfully by repeating potential scanning in the presence of BF3. Et2O in an electrolyte solution of 0.1 M LiClO4 dissolved in acetonitrile. The electronic band gaps (Eg) of the polymers P5 and P6 were found to be 2.02 eV and 2.16 eV, respectively. On the other hand, the corresponding polymers are electroactive and exhibited electrochromic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Scheme 1
Scheme 2
Fig. 8
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miranda OR, You CC, Phillips R, Kim IB, Ghosh PS, Bunz UHF, Rotello VM (2007) Array-based sensing of proteins using conjugated polymers. J Am Chem Soc 129:9856–9857

    Article  CAS  PubMed  Google Scholar 

  2. Zacharias P, Gather MC, Köhnen A, Rehman N, Meerholz K (2009) Photoprogrammable organic light-emitting diodes. Angew Chem Int Ed 48:4038–4041

    Article  CAS  Google Scholar 

  3. Zou Y, Yi T, Xiao S, Li F, Li C, Gao X, Wu J, Yu M, Huang C (2008) Amphiphilic Diarylethene as a Photoswitchable probe for imaging living cells. J Am Chem Soc 130:15750–15751

    Article  CAS  PubMed  Google Scholar 

  4. Tian H, Wang S (2007) Photochromic bisthienylethene as multi-function switches. Chem Commun (8):781–792. doi:10.1039/b610004j

  5. Sonmez G, Sonmez HB (2006) Polymeric electrochromics for data storage. J Mater Chem 16:2473–2477

    Article  CAS  Google Scholar 

  6. Cihaner A (2015) Poly(3,4-alkylenedioxyselenophene)s: past, present, and future. Synlett 26:449–460

    Article  CAS  Google Scholar 

  7. İçli M, Pamuk M, Algi F, Onal AM, Cihaner A (2010) Donor-acceptor polymer Electrochromes with tunable colors and performance. Chem Mater 22:4034–4044

    Article  Google Scholar 

  8. Algi F, Cihaner A (2009) An ambipolar neutral state green polymeric electrochromic. Org Electron 10:704–710

    Article  CAS  Google Scholar 

  9. Özkut Mİ, Algi MP, Oztas Z, Algi F, Onal AM, Cihaner A (2012) Members of CMY color space: cyan and magenta colored polymers based on Oxadiazole acceptor unit. Macromolecules 45:729–734

    Article  Google Scholar 

  10. Özkut Mİ, Oztas Z, Algi F, Cihaner A (2011) A neutral state yellow to navy polymer electrochrome with pyrene scaffold. Org Electron 12:1505–1511

    Article  Google Scholar 

  11. Meng H, Tucker D, Chaffins S, Chen Y, Helgeson R, Dunn B, Wudl F (2003) An unusual electrochromic device based on a new low-bandgap conjugated polymer. Adv Mater 15:146–149

    Article  CAS  Google Scholar 

  12. Schwendeman I, Hickman R, Sonmez G, Schottland P, Zong K, Welsh D, Reynolds JR (2002) Enhanced contrast dual polymer electrochromic devices. Chem Mater 14:3118–3122

    Article  CAS  Google Scholar 

  13. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  14. List EJW, Guentner R, De Freitas PS, Scherf U (2002) The effect of keto defect sites on the emission properties of Polyfluorene-type materials. Adv Mater 14:374–378

    Article  CAS  Google Scholar 

  15. Liscio A, De Luca G, Nolde F, Palermo V, Mullen K, Samori P (2008) Photovoltaic charge generation visualized at the nanoscale: a proof of principle. J Am Chem Soc 130:780–781

    Article  CAS  PubMed  Google Scholar 

  16. Thompson BC, Fréchet JMJ (2007) Polymer–Fullerene Composite Solar Cells. Angew Chem Int Ed 47:58–77

    Article  Google Scholar 

  17. Muccini M (2006) A bright future for organic field-effect transistors. Nat Mater 5:605–613

    Article  CAS  PubMed  Google Scholar 

  18. Yang C, Kim JY, Cho S, Lee JK, Heeger AJ, Wudl F (2008) Functionalized Methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. J Am Chem Soc 130:6444–6450

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Kim WD, Lim H (2012) Facile fabrication of conducting polymer nanowire based field effect transistor with controlled shape and position. Microelectron Eng 98:382–385

    Article  CAS  Google Scholar 

  20. Morana M, Koers P, Aldauf C, Koppe M, Muehlbacher D, Denk P, Scharber A, Waller D, Brabec C (2007) Organic field-effect devices as tool to characterize the bipolar transport in polymer-fullerene blends: the case of P3HT-PCBM. Adv Funct Mater 17:3274–3283

    Article  CAS  Google Scholar 

  21. Gundermann KD (1965) Chemiluminescence in organic compounds. Angew Chem Int Ed 4:566–573

    Article  Google Scholar 

  22. Gundermann KD (1974) Recent advances in research on the chemiluminescence of organic compounds. Top Curr Chem 46:61–139

    CAS  Google Scholar 

  23. Zhang Z, Zhang S, Zhang X (2005) Recent developments and applications of chemiluminescence sensors. Anal Chim Acta 541:37–46

    Article  CAS  Google Scholar 

  24. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    Article  CAS  PubMed  Google Scholar 

  25. Mestre YF, Zamora LL, Calatayud JM (2001) Flow-chemiluminescence: a growing modality of pharmaceutical analysis. Luminescence 16:213–235

    Article  CAS  PubMed  Google Scholar 

  26. Dodeigne C, Thunus L, Lejeune R (2000) Chemiluminescence as diagnostic tool. A review Talanta 51:415–439

    Article  CAS  PubMed  Google Scholar 

  27. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR (2007) Murthy N (2007) in vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765–769

    Article  CAS  PubMed  Google Scholar 

  28. Tsunoda M, Imai K (2005) Analytical applications of peroxyoxalate chemiluminescence. Anal Chim Acta 541:13–23

    Article  CAS  Google Scholar 

  29. White EH, Roswell DF (1970) Chemiluminescence of organic hydrazides. Acc Chem Res 3:54–62

    Article  CAS  Google Scholar 

  30. Schroeder HR, Yeager FM (1978) Chemiluminescence yields and detection limits of some isoluminol derivatives in various oxidation systems. Anal Chem 50:1114–1120

    Article  CAS  Google Scholar 

  31. Yamaguchi M, Yoshida H, Nohta H (2002) Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis. J Chrom A 950:1–19

    Article  CAS  Google Scholar 

  32. Marquette CA, Blum L (2005) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385:546–554

    Article  Google Scholar 

  33. Roda A, Pasini GP, Mirasoli M, Michelini E, Musiani M (2005) Bio- and chemiluminescence imaging in analytical chemistry. Anal Chim Acta 541:25–35

    Article  CAS  Google Scholar 

  34. Han J, Jose J, Mei E, Burgess K (2007) Chemiluminescent energy-transfer cassettes based on fluorescein and Nile red. Angew Chem Int Ed 46:1684–1687

    Article  CAS  Google Scholar 

  35. Barni F, Lewis SW, Berti A, Miskelly GM, Lago G (2007) Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72:896–913

    Article  CAS  PubMed  Google Scholar 

  36. Chan M (1989) An improved synthesis of a chemiluminescent cyclic hydrazide: N-(7-Aminobutyl)-N-ethyl-naphthalene-1,2-dicarboxylic hydrazide. Synth Commun 19:1981–1985

    Article  CAS  Google Scholar 

  37. Ishida J, Yamaguchi M, Nakahara T, Nakamura M (1990) 4,5-Diaminophthalhy drazide as a highly sensitive chemiluminescence reagent for α-keto acids in liquid chromatography. Anal Chim Acta 231:1–6

    Article  CAS  Google Scholar 

  38. Sasamoto K, Ohkura Y (1991) A new chemiluminogenic substrate for N-acetyl-β-D-glucosaminidase, 4'-(6'-Diethylaminobenzofuranyl)phthalylhydrazido-N-acetyl-β-D-glucosaminide. Chem Pharm Bull 39:411–416

    Article  CAS  Google Scholar 

  39. Ishida J, Takada M, Yakabe T, Yamaguchi M (1995) Chemiluminescent properties of some luminol related compounds. Dyes Pigments 27:17

    Article  Google Scholar 

  40. Ishida J, Takada M, Hara S, Sasamoto K, Kina K, Yamaguchi M (1995) Development of a novel chemiluminescent probe, 4-(5',6'-Dimethoxybenzothiazolyl) phthalhydrazide. Anal Chim Acta 309:211–219

    Article  CAS  Google Scholar 

  41. Yoshida H, Nakao R, Nohta H, Yamaguchi M (2000) Chemiluminescent properties of some luminol-related compounds — part 3. Dyes Pigments 47:239–245

    Article  CAS  Google Scholar 

  42. Koval’chuk EP, Grynchyshyn IV, Reshethnyak OV, Gladyshevs’kyj RY, Błażejowski J (2005) Oxidative condensation and chemiluminescence of 5-amino-2,3-dihydro-1,4-phtalazinedion. Eur. Polym J 41:1315–1325

    Google Scholar 

  43. Kumar SA, Cheng HW, Chen SM (2009) Electroanalysis of ascorbic acid (vitamin C) using nano-ZnO/poly(luminol) hybrid film modified electrode. React Funct Polym 69:364–370

    Article  Google Scholar 

  44. Zhang GF, Chen HY (2000) Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system. Anal Chim Acta 419:25–31

    Article  CAS  Google Scholar 

  45. Chen SM, Lin KC (2002) The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes. J Electroanal Chem 523:93–105

    Article  CAS  Google Scholar 

  46. Mendonça TP, Moraes SR, Motheo AJ (2006) Influence of the Synthesis Parameters on the Polyluminol Properties. Mol Cryst Liq Cryst 447:65/[383]–73/[391]

    Article  Google Scholar 

  47. Sassolas A, Blum LJ, Leca-Bouvier BD (2008) Electrogeneration of polyluminol and chemiluminescence for new disposable reagentless optical sensors. Anal Bioanal Chem 390:865–871

    Article  CAS  PubMed  Google Scholar 

  48. Asil D, Cihaner A, Algi F, Onal AM (2010) A diverse-stimuli responsive chemiluminescent probe with luminol scaffold and its electropolymerization. Electroanalysis 22:2254–2260

    Article  CAS  Google Scholar 

  49. Atilgan N, Algi F, Onal AM, Cihaner A (2009) Synthesis and properties of a novel redox driven chemiluminescent material built on a terthienyl system. Tetrahedron 65:5776–5781

    Article  CAS  Google Scholar 

  50. Asil D, Cihaner A, Onal AM (2009) A glow in the dark: synthesis and electropolymerization of a novel chemiluminescent terthienyl system. Chem Commun:307–309

  51. Oztas Z, Pamuk M, Algi F (2013) Nonreaction-based fluorescent Au3+ probe that gives fast response in aqueous solution. Tetrahedron 69:2048–2051

    Article  CAS  Google Scholar 

  52. Cihaner A, Algi F (2008) A new conducting polymer bearing 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) subunit: synthesis and characterization. Electrochim Acta 54:786–792

    Article  CAS  Google Scholar 

  53. Cihaner A, Algi F (2008) An electrochromic and fluorescent polymer based on 1-(1-naphthyl)-2,5-di-2-thienyl-1H-pyrrole. J Electroanal Chem 614:101–106

    Article  CAS  Google Scholar 

  54. Cihaner A, Algi F (2008) A processable rainbow mimic fluorescent polymer and its unprecedented coloration efficiency in electrochromic device. Electrochim Acta 53:2574–2578

    Article  CAS  Google Scholar 

  55. Cihaner A, Algi F (2008) Processable electrochromic and fluorescent polymers based on N-substituted thienylpyrrole. Electrochim Acta 54:665–670

    Article  CAS  Google Scholar 

  56. Algi F, Cihaner A (2008) An electroactive polymeric material and its voltammetric response towards alkali metal cations in neat water. Tetrahedron Lett 49:3530–3533

    Article  CAS  Google Scholar 

  57. Cihaner A, Algi F (2009) Electrochemical and optical properties of new soluble dithienylpyrroles based on azo dyes. Electrochim Acta 54:1702–1709

    Article  CAS  Google Scholar 

  58. Cihaner A, Algi F (2009) Synthesis and properties of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based conducting copolymers. React Funct Polym 69:62–67

    Article  CAS  Google Scholar 

  59. Atalar T, Cihaner A, Algi F (2009) The synthesis, characterization and energy transfer efficiency of a dithienylpyrrole and BODIPY based donor-acceptor system. Turk J Chem 33:313–319

    CAS  Google Scholar 

  60. Cihaner A, Algi F (2009) Electrochemical and optical properties of an azo dye based conducting copolymer. Turk J Chem 33:759–767

    CAS  Google Scholar 

  61. Tirkeş S, Mersini J, Öztaş Z, Algi MP, Algi F, Cihaner A (2013) A new processable and fluorescent polydithienylpyrrole electrochrome with pyrene appendages. Electrochim Acta 90:295301

    Google Scholar 

  62. Algi MP, Öztaş Z, Tirkes S, Cihaner A, Algi F (2013) A new electrochromic copolymer based on dithienylpyrrole and EDOT. Org Electron 14:1094–1102

    Article  CAS  Google Scholar 

  63. Degirmenci A, Iskenderkaptanoglu D, Algi F (2015) A novel turn-off fluorescent Pb(II) probe based on 2,5-di(thien-2-yl)pyrrole with a pendant crown ether. Tetrahedron Lett 56:602–607

    Article  CAS  Google Scholar 

  64. Algi MP, Oztas Z, Algi F (2012) Triple channel responsive Cu 2+ probe. Chem Commun 48:10219–10221

    Article  Google Scholar 

  65. Jones RG (1956) Reactions of hydrazine with heterocyclic 1,2-dicarboxylic acid esters. J Am Chem Soc 78:159–163

    Article  CAS  Google Scholar 

  66. Pamuk M, Algi F (2012) Incorporation of a 2,3-dihydro-1H-pyrrolo[3,4-d]pyridazine-1,4(6H)-dione unit into a donor–acceptor triad: synthesis and ion recognition features. Tetrahedron Lett 53:7117–7120

    Article  CAS  Google Scholar 

  67. Campaňa AMG, Baeyens WRG (eds) (2001) Chemiluminescence in analytical chemistry. Marcel Dekker Inc., New York

    Google Scholar 

  68. Reynolds JR, Poropatic PA, Toyooka RL (1987) Electrochemical copolymerization of pyrrole with N-substituted pyrroles. Effect of composition on electrical conductivity Macromolecules 20:958–961

    CAS  Google Scholar 

  69. Tirkeş S, Önal AM (2007) Electrosynthesis of polyfuran in acetonitrile–boron trifluoride–ethyl ether mixture and its device application. J Appl Polym Sci 103:871–876

    Article  Google Scholar 

  70. Street GB, Clarke TC, Geiss RH, Lee VY, Nazzal A, Pfluger P, Scott JC (1983) Characterization of polypyrrole. J Physique 44:599–606

    Google Scholar 

  71. Asil D, Cihaner A, Algi F, Onal AM (2008) A novel conducting polymer based on terthienyl system bearing strong electrone-withdrawing substituents and its electrochromic device application. J Electroanal Chem 618:87–93

    Article  CAS  Google Scholar 

  72. Niea F, Luo K, Zheng X, Zhenga J, Song Z (2015) Novel preparation and electrochemiluminescence application of luminol functional-Au nanoclusters for ALP determination. Sensors Actuators B Chem 218:152–159

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Aksaray University (ASU BAP 2015-092), Atilim University (ATU-BAP-A-1314-03, ATU-BAP-1011-05) and the Scientific and Technological Research Council of Turkey (TUBITAK, Grant No. 109R009) for partial financial support of our projects. European Cooperation in Science and Technology (COST) and Turkish Academy of Sciences (TUBA) are also gratefully acknowledged. Z. O. is indebted to TUBITAK for a graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atilla Cihaner or Fatih Algi.

Electronic supplementary material

Supplementary information associated with this article (copies of 1H, 13C NMR and HRMS spectra) can be found in the online version.

ESM 1

(DOCX 2373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algi, M.P., Oztas, Z., Tirkeş, S. et al. Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro-Pyrrolo[3,4-d]Pyridazine-1,4-Dione Scaffolds. J Fluoresc 27, 509–519 (2017). https://doi.org/10.1007/s10895-016-1978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1978-x

Keywords

Navigation