Skip to main content
Log in

Bay Functionalized Perylenediimide with Pyridine Positional Isomers: NIR Absorption and Selective Colorimetric/Fluorescent Sensing of Fe3+ and Al3+ Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Bay functionalized perylene diimide substituted with pyridine isomers, (2-pyridine (2HMP-PDI), 3-pyridine (3-HMP-PDI) and 4-pyridine (4-HMP-PDI)) have been synthesized and explored for selective coloro/fluorimetric sensing of heavy transition metal ions. HMP-PDIs showed strong NIR absorption (760–765 nm) in DMF. The absorption and fluorescence of HMP-PDIs have been tuned by make use of pyridine isomers. Reddish-orange color was observed for 2-HMP-PDI (λmax = 437, 551, 765 nm) whereas 4-HMP-PDI exhibited light green (λmax = 432, 522, 765 nm). 3-HMP-PDI showed orange-yellow (λmax = 431, 524, 762 nm). The fluorescence spectra of 2-, 3- and 4-HMP-PDI showed λmax at 585, 538, 546 nm, respectively. Interestingly, HMP-PDI dyes showed selective color change (intense pink color) and fluorescence quenching for Fe3+ and Al3+ metal ions in DMF. Absorbance spectra revealed complete disappearance of NIR absorption and intensification/appearance of new peak at lower wavelength. The concentration dependent studies suggest that 4-HMP-PDI can detect up to 36.52 ppb of Fe3+ and 43.12 ppb of Al3+ colorimetrically. The interference studies in presence of other metal ions confirmed the good selectivity for Fe3+ and Al3+. The mechanistic studies indicate that Lewis acidic character of Fe3+ and Al3+ ions were responsible for selective color change and fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Llewellyn BA, Davies ES, Pfeiffer CR, Cooper M, Lewis W, Champness NR (2016) Thionated Perylenediimides with intense absorbance in the near-IR. Chem Commun 52:2099–2102

    Article  CAS  Google Scholar 

  2. Hartnett PE, Margulies EA, Matte HSSR, Hersam MC, Marks TJ, Wasielewski MR (2016) Effects of crystalline perylenediimide acceptor morphology on optoelectronic properties and device performance. Chem Mater 28:3928–3936

    Article  Google Scholar 

  3. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D (2016) Perylene Bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 11:962–1052

    Article  Google Scholar 

  4. An Z, Yu J, Jones SC, Barlow S, Yoo S, Domercq B, Prins P, Siebbeles LDA, Kippelen B, Marder SR (2005) High electron mobility in room-temperature discotic liquid crystalline perylene diimides. Adv Mater 17:2580–2583

    Article  CAS  Google Scholar 

  5. Langhals H (1995) Cyclic carboxylic imide structures as structure elements of high-stability-novel developments in perylene dye chemistry. Heterocycles 40:477–500

    Article  CAS  Google Scholar 

  6. Huang C, Barlow S, Marder SR (2011) Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J Org Chem 76:2386–2407

    Article  CAS  PubMed  Google Scholar 

  7. Xu M, Han JM, Zhang Y, Yang X, Zang L (2013) A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide. Chem Commun 49:11779–11781

    Article  CAS  Google Scholar 

  8. Wang B, Yu C (2010) Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew Chem Int Ed 49:1485

    Article  CAS  Google Scholar 

  9. Jones BA, Ahrens MJ, Yoon MH, Facchetti A, Marks TJ, Wasielewski MR (2004) High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew Chem Int Ed 43:6363

    Article  CAS  Google Scholar 

  10. Guo X, Zhang D, Zhu D (2004) Logic control of the fluorescence of a new dyad, Spiropyran-perylene diimide-Spiropyran, with light, ferric ion, and proton: construction of a new three-input “AND” logic gate. Adv Mater 16:125

    Article  CAS  Google Scholar 

  11. Kozma E, Mróz W, Villafiorita-Monteleone F, Galeotti F, Andicsová-Eckstein A, Catellani M, Botta C (2016) Perylene diimide derivatives as red and deep red-emitters for fully solution Processable OLEDs. RSC Adv 6:61175–61179

    Article  CAS  Google Scholar 

  12. Kozma E, Catellani M (2013) Perylene diimides based materials for organic solar cells. Dyes Pigments 98:160–179

    Article  CAS  Google Scholar 

  13. Qian G, Wang ZY (2010) Near-infrared organic compounds and emerging. Applications Chemistry - An Asian Journal 5:1006–1029

    Article  CAS  Google Scholar 

  14. Aigner D, Dmitriev RI, Borisov SM, Papkovskyb DB, Klimanta I (2014) pH-sensitive perylene Bisimide probes for live cell fluorescence lifetime imaging. J Mater Chem B 2:6792–6801

    Article  CAS  Google Scholar 

  15. Avlasevich Y, Mullen K (2006) Dibenzopentarylenebis (dicarboximide)s: Novel Near-Infrared Absorbing Dyes. Chem Commun 4440–4442

  16. Zhan CL, Li ADQ (2011) Perylene diimide: versatile building blocks for molecular self-assemblies, folding motifs, and reaction-directing codes. Curr Org Chem 15:1314

    Article  CAS  Google Scholar 

  17. An Z, Yu J, Jones SC, Barlow S, Yoo S, Domercq B, Prins P, Siebbeles LDA, Kippelen B, Marder SR (2005) High electron mobility in room-temperature discotic liquid-crystalline perylene diimides. Adv Mater 17:2580

    Article  CAS  Google Scholar 

  18. Langhals H, Blanke P (2003) An approach to novel NIR dyes Utilising α-effect donor groups. Dyes Pigments 59:109–116

    Article  CAS  Google Scholar 

  19. Wang H, Kaiser TE, Uemura S, Wurthner F (2008) Perylene Bisimide J-aggregates with absorption maxima in the NIR. Chem Commun:1181–1183

  20. Sun M, Müllen K, Yin M (2016) Water-soluble Perylenediimides: design concepts and biological applications. Chem Soc Rev 45:1513–1528

    Article  CAS  PubMed  Google Scholar 

  21. Vajiravelu S, Ramunas L, Vidas GJ, Valentas G, Vygintasc J, Valiyaveettil S (2009) Effect of substituents on the electron transport properties of bay substituted perylene diimide derivatives. J Mater Chem 19:4268–4275

    Article  CAS  Google Scholar 

  22. Chen S, Slattum P, Wang C, Zang L (2015) Self-assembly of perylene imide molecules into 1D nanostructures: methods, morphologies and applications. Chem Rev 115:11967–11998

    Article  CAS  PubMed  Google Scholar 

  23. Singh P, Mittal LS, Vanita V, Kumar R, Bhargava G, Waliab A, Kumara S (2014) Bay functionalized perylenediimide as a deaggregation based intracellular fluorescent probe for perchlorate. Chem Commun 50:13994–13997

    Article  CAS  Google Scholar 

  24. Feng X, An Z, Yao Z, Li C, Shi G (2012) A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+−Mediated perylene diimide aggregates. ACS Appl Mater Interfaces 4:614–618

    Article  CAS  PubMed  Google Scholar 

  25. Singh P, Kumar K, Bhargava G, Kumar S (2016) Self-assembled Nanorods of bay functionalized perylenediimide: Cu2+ based ‘turn-on’ response for INH, complementary NOR/OR and TRANSFER logic functions and Fluorosolvato chromism. J Mater Chem C 4:2488–2497

    Article  CAS  Google Scholar 

  26. Li J, Wu Y, Song F, Wei G, Cheng Y, Zhu C (2012) A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating Salen and Perylenyl moieties. J Mater Chem 12:478–482

    Article  CAS  Google Scholar 

  27. Zhang L, Wang Y, Yu J, Zhang G, Cai X, Wu Y, Wang L (2013) A colorimetric and fluorescent sensor based on PBIs for palladium detection. Tetrahedron Lett 54:4019–4022

    Article  CAS  Google Scholar 

  28. Liu X, Zhang N, Zhou J, Chang T, Fang C, Shangguan D (2013) A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Analyst 138:901–906

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Wang D, Wang Q, Li X, Schalley CA (2010) Nickel(II) and iron(III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org Biomol Chem 8:1017–1026

    Article  CAS  PubMed  Google Scholar 

  30. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  31. Que EL, Domaille DW, Chang C (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  32. Crichton R (2001) Inorganic biochemistry of iron metabolism, 2nd edn. Wiley, Chich-ester

    Book  Google Scholar 

  33. Rouault T (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  34. Crichton RR, Ward RJ (1992) Iron metabolism-new perspectives in view. Biochemistry 31:11255

    Article  CAS  PubMed  Google Scholar 

  35. DuBois S, Kearney DJ (2005) Iron-deficiency anemia and helicobacter pylori infection: a review of the evidence. Am J Gastroenterol 100:453

    Article  PubMed  Google Scholar 

  36. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS Lett 307:108–112

    Article  CAS  PubMed  Google Scholar 

  37. Crichton RR, Dexter DT, Ward RJ (2008) Metal based neurodegenerative diseases—from molecular mechanisms to therapeutic strategies. Coord Chem Rev 252:1189–1199

    Article  CAS  Google Scholar 

  38. Flaten TP, Degard M (1988) Tea, Aluminium and Alzheimer’s disease. Food Chem Toxicol 26:959–960

    Article  CAS  PubMed  Google Scholar 

  39. Ren J, Tian H (2007) Thermally stable Merocyanine form of photochromic Spiropyran with aluminum ion as a reversible photo-driven sensor in aqueous solution. Sensors 7:3166–3178

    Article  CAS  PubMed Central  Google Scholar 

  40. Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21:813–828

    CAS  PubMed  Google Scholar 

  41. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perl DP, Gajdusek DC, Garruto RM, Yanagihara RT, Gibbs CJ (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Science 217:1053–1055

    Article  CAS  PubMed  Google Scholar 

  43. Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299

    Article  CAS  PubMed  Google Scholar 

  44. de Silv AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJ, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  45. Yan F, Wang M, Cao D, Yang N, Fu Y, Chen L, Chen L (2013) New fluorescent and colorimetric chemosensors based on the rhodamine detection of Hg2+ and Al3+ and application of imaging in living cells. Dyes Pigments 98:42–50

    Article  CAS  Google Scholar 

  46. Kundu A, Hariharan PS, Prabakaran K, Anthony SP (2015) Developing new Schiff base molecules for selective colorimetricsensing of Fe3 + and Cu2 + metal ions: substituent dependent selectivityand colour change. Sensors Actuators B 206:524–530

    Article  CAS  Google Scholar 

  47. Kumawat LK, Mergua N, Singha AK, Gupta VK (2015) A novel optical sensor for copper ions based on Phthalocyanine Tetrasulfonic acid. Sensors Actuators B 212:389–394

    Article  CAS  Google Scholar 

  48. Gupta VK, Shoora SK, Kumawat LK, Jain AK (2015) A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of Aluminium(III) ions. Sensors Actuators B 209:15–24

    Article  CAS  Google Scholar 

  49. Gupta VK, Mergu N, Singh AK (2014) Fluorescent chemosensors for Zn2+ ions based on Flavonol derivatives. Sensors Actuators B 202:674–682

    Article  CAS  Google Scholar 

  50. Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137

    Article  CAS  PubMed  Google Scholar 

  51. Karthiga D, Anthony SP (2013) Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Adv 3:16765–16774

    Article  CAS  Google Scholar 

  52. Li CY, Zhoua Y, Li YF, Zoua CX, Kong XF (2013) Efficient FRET-based colorimetric and Ratiometric fluorescent chemosensor for Al3+ in living cells. Sensors Actuators B 186:360–366

    Article  CAS  Google Scholar 

  53. Longa L, Zhou L, Wang L, Meng S, Gong A, Zhang C (2014) A Ratiometric fluorescent probe for iron(III) and its application for detection of iron(III) in human blood serum. Anal Chim Acta 812:145–151

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Science and Engineering Research Board (SERB), New Delhi, India (SERB No. EMR/2015/00-1891, SB/FT/CS-182/2011) is acknowledged with gratitude. VM is grateful to UGC, Government of India for UGC research award-2014-16 (No: 30-11/2015 (SA-II). The CRF facility of SASTRA University is also acknowledged for absorption spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vedichi Madhu or Savarimuthu Philip Anthony.

Electronic supplementary material

ESM 1

(DOCX 1529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Pitchaimani, J., Madhu, V. et al. Bay Functionalized Perylenediimide with Pyridine Positional Isomers: NIR Absorption and Selective Colorimetric/Fluorescent Sensing of Fe3+ and Al3+ Ions. J Fluoresc 27, 491–500 (2017). https://doi.org/10.1007/s10895-016-1976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1976-z

Keywords

Navigation