Skip to main content
Log in

Spectral and Photophysical Properties of α-carboline (1-Azacarbazole) in Aqueous Solutions

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The absorption and fluorescence spectra of α-carboline, 9H-pyrido[2,3-b]indole, AC, in organic aprotic solvents containing different water proportions and in acid/base aqueous solutions inside and outside the pH range have been examined. In the organic aprotic solvents, the addition of increasing concentrations of water sequentially quenches and shifts to the red the fluorescence spectra of AC. These spectral changes have been rationalized assuming the formation, at the lower water concentrations, of a discrete ground state non-cyclic weakly fluorescent AC hydrate emitting at 376 nm that, upon increasing the water concentrations, evolves to a higher order AC poly hydrate emitting at 397 nm. The changes of the AC absorption spectra in aqueous acid/basic solutions indicate the existence of three ground state prototropic species; the pyridinic protonated cation, C (pKa = 4.10 ± 0.05), the neutral, N (pKa = 14.5 ± 0.2), and the pyrrolic deprotonated anion, A. Conversely, the changes of the AC fluorescence spectra in these media indicate the existence of four excited state species emitting at 376 nm, 397 nm, 460 nm and 465 nm. Since the emissions at 376 nm and 397 nm satisfactorily match those of the hydrates observed in the organic-water mixtures, they were consistently assigned to two differently hydrated ground state N species. The remaining emissions at 460 nm and 465 nm have been assigned without ambiguity, on the basis of their excitation spectra, to the C and A species, respectively. The excited-state pKas of the prototropic species of AC have been estimated by using the Förster-Weller cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Waluk J (2000) Conformational aspects of intra- and intermolecular excited-state proton transfer. In: Waluck J (ed) Conformational analysis of molecules in excited states. Wiley-VCH, New York, pp 57–111

    Google Scholar 

  2. Cheng-Chih H, Chang-Ming J, Chou Pi-Tai (2011) Excited proton transfer via hydrogen-bonded dimers and complexes in condensed phase. In: Ke-Li H, Guang-Jiu Z (eds) Hydrogen bonding and transfer in the excited state, Wiley, vol. II, pp. 555–578

  3. Avouris P, Yang LL, El-Bayoumi MA (1976) Excited state interactions of 7-azaindole with alcohol and water. Photochem Photobiol 24:211–216

    Article  CAS  Google Scholar 

  4. Negrerie M, Gai F, Bellefeuille SM, Petrich JM (1991) Photophysics of a novel optical probe: 7-azaindole. J Phys Chem 95:8663–8670

    Article  CAS  Google Scholar 

  5. Pi-Tai C, Martinez ML, Cooper WC, Collins ST, McMorrow DP, Kasha M (1992) Monohydrate catalysis of excited-state double-proton transfer in 7-azaindole. J Phys Chem 96:5203–5205

    Article  Google Scholar 

  6. Collins ST (1983) Exciplex formation in alcohol and water solutions of 7-zaindole. J Phys Chem 87:3202–3207

    Article  CAS  Google Scholar 

  7. Chapman CF, Maroncelli M (1992) Excited-state tautomerization of 7-azaindole in water. J Phys Chem 96:8430–8441

    Article  CAS  Google Scholar 

  8. Chen Y, Rich RL, Gai F, Petrich JW (1993) Fluorescent species of 7-azaindole and 7-azatryptophan in water. J Phys Chem 97:1770–1780

    Article  CAS  Google Scholar 

  9. Park SY, Jeong H, Jang SJ (2011) Anomalously slow proton transport of a water molecule. J Phys Chem B 115:6023–6031

    Article  PubMed  CAS  Google Scholar 

  10. Chang C, Shabestary N, El-Bayoumi MA (1980) Excited-state double proton transfer in 1-azacarbazole hydrogen-bonded dimers. Chem Phys Lett 75:107–109

    Article  CAS  Google Scholar 

  11. Sepiol J, Wild UP (1982) Excited-state double proton transfer in heterodimers of 1-azacarbazole. Chem Phys Lett 93:204–207

    Article  CAS  Google Scholar 

  12. Waluk J, Pakula B (1984) Viscosity and temperature effects in excited state double proton transfer: luminescence of 1-azacarbazole dimers in solid-state and solution. J Mol Struct 114:359–362

    Article  CAS  Google Scholar 

  13. Waluk J, Grabowska A, Pakula B, Sepiol J (1984) Viscosity vs. temperature effects in excited-state double proton transfer. Comparison of 1-azacarbazole with 7-azaindole. J Phys Chem 88:1160–1162

    Article  CAS  Google Scholar 

  14. Waluk J, Herbich J, Oelkrug D, Uhl S (1986) Excited-state double proton transfer in the solid state: the dimers of 1-azacarbazole. J Phys Chem 90:3866–3868

    Article  CAS  Google Scholar 

  15. Waluk J, Komorowski SJ, Herbich J (1986) Excited-state double proton transfer in 1-azacarbazole-alcohol complexes. J Phys Chem 90:3868–3871

    Article  CAS  Google Scholar 

  16. Fuke K, Yabe T, Chiba N, Kohida T, Kaya K (1986) Double-proton-transfer reaction in the excited state of 1-azacarbazole dimer and 1-azacarbazole- 7-azaindole heterodimer studied in supersonic jet. J Phys Chem 90:309–2311

    Article  Google Scholar 

  17. Fuke K, Kaya K (1989) Dynamics of double-proton-transfer reaction in the excited-state model hydrogen-bonded base pairs. J Phys Chem 93:614–621

    Article  CAS  Google Scholar 

  18. Fuke K, Tsukamoto K, Misaizu F, Kaya K (1991) Picosecond measurements of the vibrationally resolved proton-transfer rate of the jet-cooled 1-azacarbazole dimer. J Chem Phys 95:4074–4080

    Article  CAS  Google Scholar 

  19. Mente S, Maroncelli M (1998) Solvation and the excited-state tautomerization of 7-azaindole and 1-azacarbazole: computer simulations in water and alcohol solvents. J Phys Chem 102:3860–3878

    Article  CAS  Google Scholar 

  20. Catalán J (2007) Photophysics of 1-azacarbazole dimers: a reappraisal. J Phys Chem A 111:8774–8779

    Article  PubMed  Google Scholar 

  21. Angulo G, Carmona C, Pappalardo R, Muñoz MA, Guardado P, Sánchez-Marcos E, Balón M (1997) An experimental and theoretical study on the prototropic equilibria of the four carboline isomers. J Org Chem 62:5104–5109

    Article  CAS  Google Scholar 

  22. Stephenson L, Warburton WK (1970) Synthesis of some substituted α-carbolines. J Chem Soc C 1355–1364

  23. Perkampus HH (1992) UV–VIS spectroscopy and its applications. Springer, Berlin

    Book  Google Scholar 

  24. Bagno G, Scorrano G, More O'Ferral RA (1987) Stability and solvation of organic cations. Rev Chem Intermed 7:313–352

    Article  CAS  Google Scholar 

  25. del Valle JC, Kasha M, Catalán J (2000) The singular coincidence of fluorescence spectra of the anionic and cationic species formed by the respective deprotonated and protonated pyrido-pyrrolo bases. Int J Quant Chem 77:118–127

    Article  Google Scholar 

  26. Sánchez Coronilla A, Carmona C, Muñoz MA, Balón M (2009) Ground and singlet excited state pyridinic protonation of N9- methylbetacarboline in water-N, N-dimethylformamide mixtures. J Fluorescence 19:1025–1035

    Article  Google Scholar 

  27. Sánchez Coronilla A, Carmona C, Muñoz MA, Balón M (2010) Singlet excited state pyridinic deprotonation of the N9-methylbetacarboline cations in aqueous sodium hydroxide solutions. J Fluorescence 20:163–170

    Article  Google Scholar 

  28. Lee J, Robinson GW, Webb SP, Philips LA, Clark JH (1986) Hydration dynamics of protons from photon initiated acids. J Am Chem Soc 108:6538–6542

    Article  CAS  Google Scholar 

  29. Robinson GW, Thidthethwhite PJ, Lee J (1986) Molecular aspects of ionic hydration reactions. J Phys Chem 90:4224–4233

    Article  CAS  Google Scholar 

  30. Lee J, Griffin RD, Robinson GW (1985) 2-naphthol: a simple example of proton transfer affected by water structure. J Chem Phys 82:4920–4925

    Article  CAS  Google Scholar 

  31. Solntsev KM, Huppert D, Agmon N, Tolbert LM (2000) Photochemistry of “super” photoacids. 2. Excited-state proton transfer in methanol/water mixtures. J Phys Chem A 104:4658–4669

    Article  CAS  Google Scholar 

  32. Agmon N (2005) Elementary steps in excited-state proton transfer. J Phys Chem A 109:13–35

    Article  PubMed  CAS  Google Scholar 

  33. Mohammed OF, Pines D, Dreyer J, Pines E, Nibbering ET (2005) Sequential proton transfer through water bridges in acid base reactions. Science 310:83–86

    Article  PubMed  CAS  Google Scholar 

  34. Siwick BJ, Bakker HJ (2007) On the role of water in intermolecular proton-transfer reactions. J Am Chem Soc 129:13412–13420

    Article  PubMed  CAS  Google Scholar 

  35. de Grotthuss CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim 58:54–73

    Google Scholar 

  36. Sánchez-Coronilla A, Balon M, Sánchez-Marcos E, Muñoz MA, Carmona C (2010) A theoretical study of the hydrogen bond donor capability and co-operative effects in the hydrogen bond complexes of the diaza-aromatic betacarbolines. Phys Chem Chem Phys 12:5276–5284

    Article  PubMed  Google Scholar 

  37. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  38. Balón M, Hidalgo J, Guardado P, Muñoz MA, Carmona C (1993) Acid–base and spectral properties of β-carbolines. Part 2. Dehydro and fully aromatic β-carbolines. J Chem Soc Perkin Trans 2:99–104

    Google Scholar 

  39. Vander Donckt E (1970) Acid–base properties of excited states. Progr React Kinet 5:273–299

    CAS  Google Scholar 

  40. Vander Donckt E (1969) Fluorescence solvent shifts and singlet excited state pKs of indole derivatives. Bull Soc Chim Belg 78:69–75

    Article  CAS  Google Scholar 

  41. Hidalgo J, Carmona C, Muñoz MA, Balón M (1990) Acid–base properties of carbazole in the ground and lowest excited singlet states. J Chim Phys 87:555–564

    CAS  Google Scholar 

  42. Balón M, Carmona C, Muñoz MA, Hidalgo J (1989) The acid–base properties of pyrrole an its benzologs indole and carbazole: a re-examination from the excess acidity method. Tetrahedron 45:7501–7504

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Junta de Andalucía, 2009/FQM-106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Balón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Fernández, E., Carmona, C., Muñoz, M.A. et al. Spectral and Photophysical Properties of α-carboline (1-Azacarbazole) in Aqueous Solutions. J Fluoresc 22, 815–825 (2012). https://doi.org/10.1007/s10895-011-1016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-1016-y

Keywords

Navigation