Skip to main content
Log in

Phosphate Assisted Proton Transfer in Water and Sugar Glasses: A Study Using Fluorescence of Pyrene-1-carboxylate and IR Spectroscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The role of water’s H-bond percolation network in acid-assisted proton transfer was studied in water and glycerol solutions and in sugar glasses. Proton transfer rates were determined by the fluorescence of pyrene-1-carboxylate, a compound with a higher pK in its excited state relative to the ground state. Excitation of pyrene-1-COO produces fluorescence from pyrene-1-COOH when a proton is accepted during the excited singlet state lifetime of pyrene-1-COO. The presence of glycerol as an aqueous cosolvent decreases proton transfer rates from phosphoric and acetic acid in a manner that does not follow the Stokes relationship on viscosity. In sugar glass composed of trehalose and sucrose, proton transfer occurs when phosphate is incorporated in the glass. Sugar glass containing phosphate retains water and it is suggested that proton transfer requires this water. The infrared (IR) frequency of water bending mode in sugar glass and in aqueous solution is affected by the presence of phosphate and the IR spectral bands of all phosphate species in water are temperature dependent; both results are consistent with H-bonding between water and phosphate. The fluorescence results, which studied the effect of cosolvent, highlight the role of water in assisting proton transfer in reactions involving biological acids, and the IR results, which give spectroscopic evidence for H-bonding between water and phosphate, are consistent with a mechanism of proton transfer involving H-bonding. The possibility that the phosphate-rich surface of membranes assists in proton equilibration in cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462

    Article  CAS  Google Scholar 

  2. de Grotthuss CJT (1806) Memoire sur la decomposition de l’eau et des corps qu’elle tient en dissolution a l’aide de ‘ectricite galvanique. Ann Chim Phys LVIII:54–74

    Google Scholar 

  3. Nucci NV, Zelent B, Vanderkooi JM (2008) Pyrene-1-carboxylate in water and glycerol solutions: origin of the change of pK upon excitation. J Fluoresc 18:41–49

    Article  PubMed  CAS  Google Scholar 

  4. Zelent B, Vanderkooi JM, Coleman RG, Gryczynski I, Gryczynski Z (2006) Protonation of excited state pyrene-1-carboxylate by phosphate and organic acids in aqueous solution studied by fluorescence spectroscopy. Biophys J 91(10):3864–3871

    Article  PubMed  CAS  Google Scholar 

  5. Dashnau JL, Nucci NV, Sharp K, Vanderkooi JM (2006) Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J Phys Chem 110:13670–13677

    CAS  Google Scholar 

  6. Zelent B, Nucci NV, Vanderkooi JM (2004) Liquid and ice water and glycerol/water glasses compared by infrared spectroscopy from 295 to 12 K. J Phys Chem A 108:11141–11150

    Article  CAS  Google Scholar 

  7. Wright WW, Baez CJ, Vanderkooi JM (2002) Mixed trehalose/sucrose glasses used for protein incorporation as studied by infrared and optical spectroscopy. Anal Biochem 307(1):167–172

    Article  PubMed  CAS  Google Scholar 

  8. Wright WW, Guffanti G, Vanderkooi JM (2003) Protein in sugar and glycerol/water as examined by IR spectroscopy and by the fluorescence and phosphorescence properties of tryptophan. Biophys J 85:1980–1995

    Article  PubMed  CAS  Google Scholar 

  9. Vanderkooi JM, Dashnau JL, Zelent B (2005) Temperature excursion infrared (TEIR) spectroscopy used to study hydrogen bonding between water and biomolecules. Biochim Biophys Acta 1749:214–233

    PubMed  CAS  Google Scholar 

  10. Fischkoff S, Vanderkooi JM (1975) Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene. J Gen Physiol 65(5):663–676

    Article  PubMed  CAS  Google Scholar 

  11. Angulo G, Grampp G, Rosspeintner A (2006) Recalling the appropriate representation of electronic spectra. Spectrochim Acta A 65:727–731

    Article  CAS  Google Scholar 

  12. Parsons MT, Westh P, Davies JV, Trandum C, To ECH, Chiang WM, Yee EGM, Koga Y (2001) A thermodynamic study of 1-propanol-glycerol-H2O at 25 degrees C: effect of glycerol on molecular organization of H2O. J Sol Chem 30:1007–1028

    Article  CAS  Google Scholar 

  13. To ECH, Davies JV, Tucker M, Westh P, Trandum C, Suh KSH, Koga Y (1999) Excess chemical potentials, excess partial molar enthalpies, entropies, volumes, and isobaric thermal expansivities of aqueous glycerol at 25 degrees C. J Sol Chem 28:1137–1157

    Article  CAS  Google Scholar 

  14. Lloyd KG, Banse BA, Hemminger JC (1986) Vibrational analysis of water adsorbed on Pd(100): sensitivity of the isotope shifts of bending modes to the bonding site. Phys Rev B 33:2858–2860

    Article  CAS  Google Scholar 

  15. Sharp KA, Madan B, Manas ES, Vanderkooi JM (2001) Water structure changes induced by hydrophobic and polar solutes revealed by simulations and infrared spectroscopy. J Chem Phys 114:1791–1796

    Article  CAS  Google Scholar 

  16. Klahn M, Mathias G, Kotting CN, Schlitter J, Gerwert K, Tavan P (2004) IR spectra of phosphate ions in aqueous solution: predictions of a DFT/MM approach compared with observations. J Phys Chem A 108:6186–6194

    Article  CAS  Google Scholar 

  17. Shimoni E, Nachliel E, Gutman M (1993) Gaugement of the inner space of the apomyoglobin’s heme binding site by a single free diffusing proton II. Interaction with a bulk proton. Biophys J 64:480–483

    Article  PubMed  CAS  Google Scholar 

  18. Gepshtein R, Leiderman P, Huppert D, Project E, Nachliel E, Gutman M (2006) Proton antenna effect of the gamma-cyclodextrin outer surface, measured by excited state proton transfer. J Phys Chem B 110:26354–26364

    Article  PubMed  CAS  Google Scholar 

  19. Roche CJ, Guo F, Friedman JM (2006) Molecular level probing of preferential hydration and its modulation by osmolytes through the use of pyranine complexed to hemoglobin. J Biol Chem 281:38757–38768

    Article  PubMed  CAS  Google Scholar 

  20. Weller A (1961) Fast reactions of excited molecules. Prog React Kinet 1:187–214

    CAS  Google Scholar 

  21. Douzou P (1977) Cryobiochemistry. An introduction. Academic, London

    Google Scholar 

  22. Prabhu NV, Dalosto SD, Sharp KA, Wright WW, Vanderkooi JM (2002) Optical spectra of Fe(II) cytochrome c interpreted using molecular dynamics simulations and quantum mechanical calculations. J Phys Chem B 106:5561–5571

    Article  CAS  Google Scholar 

  23. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA (1992) The role of solvent viscosity in the dynamics of protein conformational changes. Science 256:1796–1798

    Article  PubMed  CAS  Google Scholar 

  24. Kaposi AD, Vanderkooi JM, Wright WW, Fidy J, Stavrov SS (2001) Influence of static and dynamic disorder on the visible and infrared absorption spectra of carbonmonoxy horseradish peroxidase. Biophys J 81(6):3472–3482

    Article  PubMed  CAS  Google Scholar 

  25. Kaposi AD, Prabhu NV, Dalosto SD, Sharp KA, Wright WW, Stavrov SS, Vanderkooi JM (2003) Solvent dependent and independent motions of CO–horseradish peroxidase examined by infrared spectroscopy and molecular dynamics calculations. Biophys Chem 106:1–14

    Article  PubMed  CAS  Google Scholar 

  26. Stavrov SS, Wright WW, Vanderkooi JM, Fidy J, Kaposi AD (2002) Optical and IR absorption as probe of dynamics of heme proteins. Biopolymers 67:255–259

    Article  PubMed  CAS  Google Scholar 

  27. Khajehpour M, Troxler T, Vanderkooi JM (2003) The effect of protein dynamics upon reactions that occur in the heme-pocket of horseradish peroxidase. Biochemistry 42:2672–2679

    Article  PubMed  CAS  Google Scholar 

  28. Marcus RA (1968) Theoretical relations among rate constants, barriers, and Bronsted slopes of chemical reactions. J Phys Chem 72:891–899

    Article  CAS  Google Scholar 

  29. Dashnau JL, Vanderkooi JM (2007) Computational approaches to investigate how biological macromolecules can be protected in extreme conditions. J Food Sci 72:R1–R10

    Article  CAS  Google Scholar 

  30. Georgievskii Y, Medvedex ES, Stuchebrukhov AA (2002) Proton transport via the membrane surface. Biophys J 82:2833–2846

    Article  PubMed  CAS  Google Scholar 

  31. Gabriel B, Teissie J (1993) Proton long-range migration along protein monolayers and its consequences on membrane coupling. Proc Natl Acad Sci USA 93:14521–14525

    Article  Google Scholar 

  32. Mezer A, Friedman R, Noivirt O, Nachliel E, Gutman M (2005) The mechanism of proton transfer between adjacent sites exposed to water. J Phys Chem B 109:11379–11388

    Article  PubMed  CAS  Google Scholar 

  33. Serowy S, Saparov SM, Antonenko YN, Koziovsky W, Hagen V, Pohl P (2003) Structural proton diffusion along lipid bilayers. Biophys J 84:1031–1037

    Article  PubMed  CAS  Google Scholar 

  34. Huang C, Mason JT (1978) Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci USA 75:308–310

    Article  PubMed  CAS  Google Scholar 

  35. Friedman R, Fischer S, Nachliel E, Scheiner S, Gutman M (2007) Minimum energy pathways for proton transfer between adjacent sites exposed to water. J Phys Chem B 111:6059–6070

    Article  PubMed  CAS  Google Scholar 

  36. Lide DR (ed) (2005–2006) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant PO1 GM48130 (J.M.V.), Texas Emerging Technologies Fund (Z.G. and I.G.) and fellowship NIH F31 NSO53399 to NVN. We thank Jennifer Dashnau, Jennifer Greene and Nathan Scott for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane M. Vanderkooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelent, B., Vanderkooi, J.M., Nucci, N.V. et al. Phosphate Assisted Proton Transfer in Water and Sugar Glasses: A Study Using Fluorescence of Pyrene-1-carboxylate and IR Spectroscopy. J Fluoresc 19, 21–31 (2009). https://doi.org/10.1007/s10895-008-0375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0375-5

Keywords

Navigation