Skip to main content
Log in

Quenching of Pyrene Fluorescence by Calix[4]arene and Calix[4]resorcinarenes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Interactions involving calixarene and its derivatives are of major importance due to their widespread applications as unique hosts. Fluorescence from a common probe pyrene is used to study interactions involving calix[4]resorcinarene [1a] and its tetra-morpholine derivative [1b] in 1 M aqueous NaOH. These compounds efficiently quench the pyrene fluorescence. A comparison with the fluorescence quenching behavior of N-methylmorpholine clearly indicates the presence of long-range interactions involving 1a and 1b; the interactions are specific to the calixarene molecular framework. This is not the case for a tetra-nitro-substituted calix[4]arene [2b], an electron/charge acceptor quencher, as p-nitrophenol also shows similar interactions with pyrene. Effectiveness of cesium as the quencher of pyrene fluorescence is reduced in the presence of electron/charge donating 1b; fluorescence enhancement is observed upon addition of cesium as the concentration of 1b is increased in the solution. The role of calixarene framework in interactions involving such compounds is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gutsche CD (1989) In: Stoddart JF (ed) Calixarenes: monographs in supramolecular chemistry. Royal Society of Chemistry, London

    Google Scholar 

  2. Aoyama Y, Tanaka Y, Sugahara S (1989) Molecular recognition. 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle. J Am Chem Soc 111:5397–5404

    Article  CAS  Google Scholar 

  3. Chawla HM, Srinivas K (1994) Molecular diagnostics: synthesis of new chromogenic calix[8]arenes as potential reagents for detection of amines. J Chem Soc Chem Commun 2593–2594

  4. Kubo Y, Maruyama S, Ohhara N, Nakamura M, Tokita SS (1995) Molecular recognition of butylamines by a binaphthyl-derived chromogenic calix[4]crown. J Chem Soc Chem Commun 1727–1728

  5. Chawla HM, Srinivas K (1996) Synthesis of new chromogenic calixarenes through bisazo biphenyl linkages. J Org Chem 61:8464–8467

    Article  CAS  Google Scholar 

  6. Ludwig R (2000) Calixarenes in analytical and separation chemistry. Fresenius J Anal Chem 367:103

    Article  PubMed  CAS  Google Scholar 

  7. Pod’yachev SN, Mustafina AR, Morozov VI, Ivanova EG, Galyametdinov YG, Konovalov AI (2001) Complexation of dialkylaminomethylated calix[4]resorcinarenes with bis-acetonato and salicylaldiminato complexes of Cu(II). Mat Sci Eng C 18:141–145

    Article  Google Scholar 

  8. Venkatesan N (2000) Studies on calixarene based molecular receptors. Ph.D. Thesis, IIT, New Delhi

  9. Diamond D, Mckervey MA (1996) Calixarene-based sensing agents. Chem Soc Rev 25:15–24

    Article  CAS  Google Scholar 

  10. Duncan DM, Cockayne JS (2001) Application of calixarene ionophores in PVC based ISEs for uranium detection. Sensors Actuators B 73:228–235

    Article  Google Scholar 

  11. Li D, Yang X, Mc Branch D (1997) Molecular architecture of calixarenes and their self-assembled mono- and multi-layers for nonlinear optical (NLO) applications. Syn Metals 86:1849–1850

    Article  CAS  Google Scholar 

  12. Nabok AV, Lavrik NV, Kazantseva ZI, Nesterenko BA, Markovskiy LM (1995) Complexing properties of calix[4]resorcinolarene LB films. Thin Solid Films 259:244–247

    Article  CAS  Google Scholar 

  13. Valeur B (2001) Molecular fluorescence: principles and application. Wiley, New York

    Google Scholar 

  14. Birks JB (1970) In: Photophysics of aromatic molecules. Wiley-Interscience, New York

    Google Scholar 

  15. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito, CA

    Google Scholar 

  16. Gore MG (ed) (2000) In: Spectrophotometry and spectrofluorimetry. Oxford University Press, London

  17. Rettig W, Strehmel B, Schrader S, Seifert H (eds) (1999) In: Applied fluorescence in chemistry, biology, and medicine. Springer, Berlin Heidelberg New York

  18. Guilbault GG (ed) (1990) In: Practical Fluorescence. Marcel Dekker, New York

  19. Wosnick JH, Swager TM (2004) Enhanced fluorescence quenching in receptor-containing conjugated polymers: a calix[4]arene-containing poly(phenylene ethynylene). Chem Commun 2744–2745

  20. Lee JY, Sung KK, Jung JH, Kim JS (2005) Bifunctional fluorescent Calix[4]arene Chemosensor for Both a Cation and an Anion. J Org Chem 70:1463–1466

    Article  PubMed  CAS  Google Scholar 

  21. Inouye M, Hashimoto KI, Isagawa K (1994) Nondestructive detection of acetylcholine in protic media: artificial-signaling acetylcholine receptors. J Am Chem Soc 116:5517–5518

    Article  CAS  Google Scholar 

  22. Megyesi M, Biczok L (2006) Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes. Chem Phys Lett 424:71–76

    Article  CAS  Google Scholar 

  23. Bakirci H, Nau WM (2006) Fluorescence regeneration as a signaling principle for choline and carnitine binding: a refined supramolecular sensor system based on a fluorescent azoalkane. Adv Functional Mater 16:237–242

    Article  CAS  Google Scholar 

  24. Kubinyi M, Vidoczy T, Varga O, Nagy K, Bitter I (2005) Absorption and fluorescence spectroscopic study on complexation of oxazine 1 dye by Calix[8]arenesulfonate. Appl Spectrosc 59:134–139

    Article  PubMed  CAS  Google Scholar 

  25. Iki N, Horiuchi T, Oka H, Koyama K, Morohashi N, Kabuto C, Miyano S (2001) Energy transfer luminescence of Tb3+ ion complexed with calix[4]arenetetrasulfonate and the thia and sulfonyl analogue. The effect of bridging groups. J Chem Soc Perkin Trans 2:2219–2225

    Google Scholar 

  26. Shi YH, Wang DY, Zhang ZH (1995) Fluorescence enhancement of guests by the formation of inclusion complexes with p-tert-butylcalix[8]arene bearing polyoxyethylene chains in aqueous solution. J Photochem Photobiol A: Chem 91:211–215

    Article  CAS  Google Scholar 

  27. Matsushita YI, Takanao M (1993) Synthesis of aminomethylated calix[4]resorcinarenes. Tetrahedron Lett 34:7433–7436

    Article  CAS  Google Scholar 

  28. Kumar S, Kurur ND, Chawla HM (2001) Varadarajan, R. A convenient one pot one step synthesis of p-nitrocalixarenes via ipsonitration. Syn Commun 32:775–779

    Article  Google Scholar 

  29. Kumar S (2004) Studies on synthesis and applications of substituted calixarenes, Ph.D. Thesis, IIT, New Delhi

  30. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  31. Knibbe H, Rehm D, Weller A (1968) Intermediates and kinetics of fluorescence quenching by electron transfer. Ber Bunsen-Ges Phys Chem 72:257–263

    CAS  Google Scholar 

  32. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and hydrogen-atom transfer. Isr J Chem 8:259–271

    CAS  Google Scholar 

  33. Saik V, Goun AA, Fayer MD (2004) Photoinduced electron transfer and geminate recombination for photoexcited acceptors in a pure donor solvent. J Chem Phys 120:9601–9611

    Article  PubMed  CAS  Google Scholar 

  34. Acree WE Jr, Pandey S, Tucker SA, Fetzer JC (1997) Spectrofluorometric analysis of aromatic compounds: review of applicability of nitromethane as a selective fluorescence quenching agent for identification of alternant vs. nonalternant polycyclic aromatic hydrocarbons, polycyclic aromat. Polycyclic Arom Comp 12:71–123

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Council of Scientific and Industrial Research, India and Department of Biotechnology, India for senior research fellowships to SP and AB; and Department of Science and Technology, Govt. of India for financial assistance. MA would like to recognize a fellowship from UGC, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Azam, Siddharth Pandey or H. M. Chawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Ali, M., Bishnoi, A. et al. Quenching of Pyrene Fluorescence by Calix[4]arene and Calix[4]resorcinarenes. J Fluoresc 18, 533–539 (2008). https://doi.org/10.1007/s10895-007-0296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0296-8

Keywords

Navigation