Skip to main content
Log in

Low Temperature Metal-Enhanced Fluorescence

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this short letter, we describe the effects of low temperature on the Metal-Enhanced Fluorescence (MEF) phenomenon. Fluorophores close to Silver Island Films (SiFs) show on average two- to ten-fold enhancements in their fluorescence signatures at room temperature. However, at 77 K, we have observed that MEF is even more pronounced as compared to an identical glass control sample. We also demonstrate that the further enhancements in MEF occur at low temperature over a range of visible wavelengths for different fluorophores, for both SiFs and 20 nm surface deposited gold colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drexhage KH (1974) In: Wolfe E (ed) Progress in Optics. North-Holland, Amsterdam, pp 161–232

    Google Scholar 

  2. Pettinger B, Gerolymatou A (1984) Dyes adsorbed at Ag–colloids—substitution of fluorescence by similarly efficient surface fluorescence and surface Raman-scattering. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 88(4):359–363

    CAS  Google Scholar 

  3. Glass AM, Liao PF, Bergman JG, Olson DH (1980) Interaction of metal particles with absorbed dye molecules—absorption and luminescence. Opt Lett 5(9):368–370

    Article  CAS  Google Scholar 

  4. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70(18):3898–3905

    Article  PubMed  CAS  Google Scholar 

  5. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152

    Article  CAS  Google Scholar 

  6. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Article  Google Scholar 

  7. Gersten JI, (2004) Theory of fluorophore–metallic surface interactions, in Topics in Fluorescence Spectroscopy, vol. 8. In: Geddes CD, Lakowicz JR (eds) Springer, New York, pp 197–221

    Google Scholar 

  8. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24

    Article  PubMed  CAS  Google Scholar 

  9. Dulkeith E, Ringler M, Klar TA, Feldmann J, MunozJavier A, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression 5:585–589

  10. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  PubMed  CAS  Google Scholar 

  11. Chowdhury MH, Aslan K, Malyn SN, Lakowicz JR, Geddes CD (2006) Metal-enhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states. Appl Phys Lett 88:173104

    Article  CAS  Google Scholar 

  12. Zhang Y, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem, B 110(49):25108–25114

    Article  CAS  Google Scholar 

  13. Zhang Y, Aslan K, Previte MJ, Geddes CD (2006) Metal-enhanced S2 fluorescence from azulene. Chem Phys Lett 432(4–6):528–532

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Aslan K, Previte MJ, Geddes CD (2007) Metal-enhanced fluorescence: surface plasmons can radiate a fluorophores structured emission. Appl Phys Lett 90:053107

    Article  CAS  Google Scholar 

  15. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Fluorescence detection gains in sensitivity. Photonics Spectra 38(2):92–99

    Google Scholar 

  16. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids and Surfaces A-Physicochemical and Engineering Aspects 171(1–3):115–130

    Article  CAS  Google Scholar 

  17. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15(5):643–654

    Article  PubMed  CAS  Google Scholar 

  18. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194

    Article  PubMed  CAS  Google Scholar 

  19. Aslan K, Malyn SN, Geddes CD (2007) Metal-enhanced fluorescence from gold surfaces: angular dependent emission. J Fluoresc 17(1):7–13

    Article  PubMed  CAS  Google Scholar 

  20. See KC, Spicer JB, Brupbacher J, Zhang D, Vargo TG (2005) Modeling interband transitions in silver nanoparticle–fluoropolymer composites 109:2693–2698

  21. Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance 109:18218–18222

  22. Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8(3):472–478

    Article  PubMed  CAS  Google Scholar 

  23. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067

    Article  PubMed  CAS  Google Scholar 

  24. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal Biochem 262(2):137–156

    Article  PubMed  CAS  Google Scholar 

  25. Cheng PP, Silvester D, Wang G, Kalyuzhny G, Douglas A, Murray RW (2006) Dynamic and static quenching of fluorescence by 1–4 nm diameter gold monolayer-protected clusters. J Phys Chem B 110(10):4637–4644

    Article  PubMed  CAS  Google Scholar 

  26. Jennings TL, Singh MP, Strouse GF (2006) Fluorescent lifetime quenching near <i>d </i> = 1.5 nm gold nanoparticles: probing NSET Validity 128:5462–5467

  27. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FC, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Physical Review Letters 89(20):203002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would also like to thank UMBI/MBC and the IoF for salary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Aslan, K., Previte, M.J.R. et al. Low Temperature Metal-Enhanced Fluorescence. J Fluoresc 17, 627–631 (2007). https://doi.org/10.1007/s10895-007-0235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0235-8

Keywords

Navigation