Skip to main content
Log in

Temperature-dependent Time-resolved Fluorescence Study of Cinchonine Alkaloid Dication

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Photo induced excited state dynamical processes of cinchonine alkaloid dication (C++) have been studied over a wide range of temperature using steady state and nanosecond time-resolved fluorescence spectroscopic techniques. The temperature-dependent fluorescence studies of C++ clearly indicate the existence of two distinct emitting species having their own characteristic decay rates. The shorter-lived species shows a usual temperature dependence with increasing non-radiative deactivation at higher temperatures, while the longer-lived species show features resembling to the excited state solvent relaxation process with a large solvent relaxation time (τ r ∼ 6 ns). The species emitting in the lower energy side, having longer decay time is found to be more sensitive towards chloride ion quenching and has a charge transfer character. Further, concentration quenching with decrease in τ r of long lived species shows the possibility of energy migration along with solvent relaxation in C++.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Franz MH, Röper S, Wartchow R, Hoffmann HMR (2004) The first and second cinchona rearrangement. Two fundamental transformations of alkaloid chemistry. J Org Chem 69:2983–2991

    Article  PubMed  CAS  Google Scholar 

  2. Hoffmann HMR, Frackenpohl J (2004) Recent advances in cinchona alkaloid chemistry. Eur J Org Chem 21:4293–4312

    Article  Google Scholar 

  3. Kold HC, Van Nieuwenhze MS, Sharpless KB (1994) Catalytic asymmetric diydroxylation. Chem Rev 94:2463–2547

    Google Scholar 

  4. Braje WM, Wartchow R, Hoffmann HMR (1999) Structure and mechanism in cinchona alkaloid chemistry: overturning a 50-year-old misconception. Angew Chem Int Ed Engl 38:2539–2543

    Article  PubMed  Google Scholar 

  5. Yu D, Sujuki M, Xie L, Moriss-Natschke SL, Lee KH (2003) Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev 23:322–345

    Article  PubMed  CAS  Google Scholar 

  6. Hutzter JM, Walker GS, Wienkers LC (2003) Inhibition of cytochrome P450 2D6: structure–activity studies using a series of quinidine and quinine analogues. Chem Res Toxicol 16:450–459

    Article  Google Scholar 

  7. Spikes JD (1998) Photosensitizing properties of quinine and synthetic antimalarials. J Photochem Photobiol B Biol 42:1–11

    Article  CAS  Google Scholar 

  8. Oh EC, Kim Y (1988) The Pfeiffer effect of [CoII(acac)2 (diamine)] with Cinchona alkaloid in some organic solvents. Bull Korean Chem Soc 9:355–359

    CAS  Google Scholar 

  9. Joshi HC, Upadhyay A, Mishra H, Tripathi HB, Pant DD (1999) Edge excitation red shift and microenvironmental effects on the photophysics of quinine bisulphate. J Photochem Photobiol A Chem 122:185–189

    Article  CAS  Google Scholar 

  10. Pant S, Tripathi HB, Pant DD (1995) Solvent polarity and viscosity effect on the fluorescence spectrum and excited state decay time of quinine dication. J Photochem Photobiol A Chem 85:33–38

    Article  CAS  Google Scholar 

  11. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  PubMed  CAS  Google Scholar 

  12. Pant D, Tripathi UC, Joshi GC, Tripathi HB, Pant DD (1990) Photophysics of doubly-charged quinine: steady state and time-dependent fluorescence. J Photochem Photobiol A Chem 51:313–325

    Article  CAS  Google Scholar 

  13. Pant D, Tripathi HB, Pant DD (1990) Photophysics of protonated 6-methoxyquinoline: steady state and time-dependent fluorescence. J Photochem Photobiol A Chem 54:239–249

    Article  CAS  Google Scholar 

  14. Itoh K, Azumi T (1975) Shift of the emission band upon excitation at the long wavelength absorption edge. II. Importance of the solute–solvent interaction and the solvent reorientation relaxation process. J Chem Phys 62:3431–3438

    Article  CAS  Google Scholar 

  15. O’Connor DV, Meech SR, Phillips D (1982) Complex fluorescence decay of quinine bisulphate in aqueous sulphuric acid solution. Chem Phys Lett 88:22–26

    Article  CAS  Google Scholar 

  16. Bakhshiev NG (1962) Universal molecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. II. Phthalimide derivatives (liquid solutions). Opt Spektrosk 12:582–587

    CAS  Google Scholar 

  17. Bakhshiev NG (1962) Universal intermolecular interactions and their effect on the position of electron spectra of molecules in dissolved two-component solutions. VI. Dipole moments and the structure of molecules of some derivatives of phthalimide in the ground and the first excited electron states. Opt Spektrosk 13:192–201

    CAS  Google Scholar 

  18. Bakhshiev NG, Mazurenko YT, Peterskaya IV (1966) Luminescence decay in various regions of the luminescence spectrum of molecules in viscous solvents. Opt Spektrosk 21(5):550–554

    CAS  Google Scholar 

  19. Bakhshiev NG, Klochkov VP, Neporent BS, Cherkasov AS (1962) Absorption and fluorescence of the vapor of anthracene and its derivatives. Opt Spektrosk 12:582–587

    CAS  Google Scholar 

  20. Bakhshiev NG, Gularyan SK, Dobretsov GE, Kirillova YA, Svetlichny VY (2006) Solvatochromism and solvatofluorochromism of the intramolecular charge transfer and of 4-dimethylaminochalcone in the electronic spectra of its solutions. Opt Spectrosc 100:700–708

    Article  CAS  Google Scholar 

  21. Azumi T, Itoh K, Shiraishi H (1976) Shift of emission band upon the excitation at the long wavelength absorption edge. III. Temperature dependence of the shift and correlation with the time dependent spectral shift. J Chem Phys 65:2550–2555

    Article  CAS  Google Scholar 

  22. Ikeyama T, Azumi T, Murso T, Yamazaki I (1983) Shift of emission band upon excitation at the long-wavelength absorption edge. Time-dependent fluorescence shift of a fluid ethanol solution of 6-methoxyquinoline. Chem Phys Lett 96:419–421

    Article  CAS  Google Scholar 

  23. Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217

    Article  CAS  Google Scholar 

  24. Mishra H (2002) Photoinduced electronic excited state relaxation and proton transfer phenomena in some hydrogen bonded molecules. Ph.D. Thesis, Kumaon University, Nainital, India

  25. Pant S, Pant D, Tripathi HB (1993) Photophysics of the dications of cinchonine and cinchonidine. J Photochem Photobiol A Chem 75:137–149

    Article  CAS  Google Scholar 

  26. Liu Y, Yang YW, Zhang HY, Hu BW, Ding F, Li CJ (2004) Diastereoisomer selective inclusion of Cinchona alkaloids with a modified β-cyclodextrin: fluorescent behaviour enhance by chiral teather binding. Short communication. Chem Biodivers 1:481–488

    Article  PubMed  CAS  Google Scholar 

  27. Mishra H, Pant D, Pant TC, Tripathi HB (2006) Edge excitation red shift and energy migration in quinine bisulphate dication. J Photochem Photobiol A Chem 177:197–204

    Article  CAS  Google Scholar 

  28. Strickler S, Berg RA (1962) Relationship between absorption intensity and fluorescence decay time of molecules. J Chem Phys 37:814

    Article  CAS  Google Scholar 

  29. Kosower EM, Dodiuk H, Kanety H (1978) Intramolecular donor–acceptor system. 4. Solvent effects on radiative and nonradiative processes for the charge-transfer states of N-arylaminonaphthalenesulfonates. J Am Chem Soc 100:4179–4188

    Article  CAS  Google Scholar 

  30. Ghiggino KP, Lee AG, Meech SR, O’Connor DV, Phillips D (1981) Time-resolved emission spectroscopy of the dansyl fluorescence probe. Biochemistry 20:5381–5389

    Article  PubMed  CAS  Google Scholar 

  31. Bismuto E, Jameson DM, Gratton E (1987) Dipolar relaxations in glycerol: a dynamic fluorescence study of 4-[2′-(dimethylamino)-6′-naphthoyl]cyclohexanecarboxylic acid (DANCA). J Am Chem Soc 109:2354–2357

    Article  CAS  Google Scholar 

  32. Sun JS, Rougee M, Delarue M, Garestier TM, Helene C (1990) Solvent relaxation around excited 2-methoxy-6-chloro-9-aminoacridine in aqueous solvents. J Phys Chem 94:968–977

    Article  CAS  Google Scholar 

  33. DeToma RP, Ester JH, Brand L (1976) Dynamic interaction of fluorescence probes with the solvent environment. J Am Chem Soc 98:5001–5007

    Article  CAS  Google Scholar 

  34. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Femtosecond solvation dynamics of water. Nature 369:471–473

    Article  CAS  Google Scholar 

  35. Impey W, Madden PA, Mcdonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87:5071–5083

    Article  CAS  Google Scholar 

  36. Guardia E, Padro JA (1990) Molecular dynamics simulation of single ions in aqueous solutions: effects of the flexibility of the water molecules. J Phys Chem 94:6049–6055

    Article  CAS  Google Scholar 

  37. Wang Y, Tominaga Y (1994) Dynamical structure of water in aqueous electrolyte solutions by low-frequency Raman scattering. J Chem Phys 101:3453–3458

    Article  CAS  Google Scholar 

  38. Obst S, Bradaczek H (1996) Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations. J Phys Chem 100:15677–15687

    Article  CAS  Google Scholar 

  39. Tongraar A, Liedl KR, Rode BM (1997) Solvation of Ca2+ in water studied by Born–Oppenheimer ab initio QM/MM dynamics. J Phys Chem A 101:6299–6309

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (HM) is thankful to CSIR and DST, New Delhi, India for the financial assistance. Dr. Supriya Tilvi, MBU, IISc, Bangalore is acknowledged for the critical reading of the manuscript. The authors are thankful to DST and CSIR, New Delhi, India for the financial assistance. The authors are also thankful to the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirdyesh Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, H., Pant, S. & Tripathi, H.B. Temperature-dependent Time-resolved Fluorescence Study of Cinchonine Alkaloid Dication. J Fluoresc 18, 17–27 (2008). https://doi.org/10.1007/s10895-007-0229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0229-6

Keywords

Navigation