Skip to main content
Log in

Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission

Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The first observation of Metal-Enhanced Fluorescence (MEF) from large gold colloids is presented. Gold colloids, 40 and 200 nm diameter, were deposited onto glass substrates in a homogeneous fashion. The angular-dependent fluorescence emission of FITC-HSA, adsorbed onto gold colloids, was measured on a rotating stage which was used to evaluate MEF at all spatial angles. The emission intensity of FITC-HSA was found to be up to 2.5-fold brighter than the emission on bare glass substrates at an angle of 270 degrees. This is explained by the Radiating Plasmon Model, whereby the combined system, composed of the fluorophore and the metal colloids, emits with the photophysical characteristics of the fluorophore, after the excitation and the partial radiationless energy transfer between the excited states of the fluorophore and the surface plasmons of the gold colloids. The fluorescence enhancement was found to be higher with 200 nm gold colloids as compared to 40 nm colloids due to the increased contribution of the scattering portion of the 200 nm gold colloid extinction spectrum. These observations suggest that gold colloids could be used in MEF applications, offering more stable surfaces than the commonly used silvered surfaces, for applications requiring longer term storage and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

HSA:

Human serum albumin

MEF:

Metal-Enhanced Fluorescence

RPM:

Radiating Plasmon Model

References

  1. Aslan K, Gryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  PubMed  CAS  Google Scholar 

  2. Aslan K, Gryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) In: Shayne G (ed) Drug discovery handbook. Wiley, New Jersey, pp 603–666

  3. Aslan K, Holley P, Geddes CD (2006) Microwave-accelerated metal enhanced fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery. J Immunol Methods 312:137–147

    Article  PubMed  CAS  Google Scholar 

  4. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2004) In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2004. Kluwer Academic/Plenum Publishers, New York, pp 365–401

  5. Aslan K, Geddes CD (2006) Microwave accelerated and metal enhanced fluorescence myoglobin detection on silvered surfaces: Potential application to myocardial infarction diagnosis. Plasmonics 1(1):53–59

    Article  Google Scholar 

  6. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2005) Radiative decay engineering. In: Geddes CD, Lakowicz JR (eds) Topics in fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York, pp 401–448

    Google Scholar 

  7. Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) Metal-enhanced emission from indocyanine green: A new approach to in vivo imaging. J Biomed Opt 8(3):472–478

    Article  PubMed  CAS  Google Scholar 

  8. Geddes CD, Cao H, Gryczynski I, Grcyzynski Z, Fang J, Lakowicz JR (2003) Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J Phys Chem A 107(18):3443–3449

    Article  CAS  Google Scholar 

  9. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence. J Phys Chem B 107(13):6247–6251

    Article  Google Scholar 

  10. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence. J Phys Chem B 109(8):3157–3162

    Article  CAS  Google Scholar 

  11. Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833

    Article  CAS  Google Scholar 

  12. Parfenov A, Geddes CD, Lakowicz JR (2003) Photodeposition of silver can result in metal-enhanced fluorescence. Appl Spectrosc 57(5):526–531

    Article  PubMed  Google Scholar 

  13. Geddes CD, Parfenov A, Roll D, Fang J, Lakowicz JR (2003) Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir 19(15):6236–6241

    Article  CAS  Google Scholar 

  14. Aslan K, Badugu R, Geddes CD (2005) Metal-enhanced fluorescence from plastic substrates. J Fluoresc 15(2):99–104

    Article  PubMed  CAS  Google Scholar 

  15. Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2004) Spectrochimica Acta Part A 60(8–9):1977–1983

    Article  Google Scholar 

  16. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons. J Fluoresc 15(5):643–654

    Article  PubMed  CAS  Google Scholar 

  17. Aslan K, Perez-Luna VH (2004) Quenched emission of fluorescence by ligand functionalized gold nanoparticles. J Fluoresc 14:401–405

    Article  PubMed  CAS  Google Scholar 

  18. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  PubMed  CAS  Google Scholar 

  19. Dulkeith E, Ringler M, Klar TA, Feldmann J, Javier AM, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5(4):585–589

    Article  PubMed  CAS  Google Scholar 

  20. Yguerabide J, Yguerabide E (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theor Anal Biochem 262:137–156

    Article  CAS  Google Scholar 

  21. Yguerabide J, Yguerabide E (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—II. Experimental characterization. Anal Biochem 262:157–176

    Article  PubMed  CAS  Google Scholar 

  22. Aslan K, Holley P, Davies L, Lakowicz JR, Geddes CD (2005) Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing. J Am Chem Soc 127:12115–12121

    Article  PubMed  CAS  Google Scholar 

  23. Mie G (1908) Ann Phys 25:377–445

    CAS  Google Scholar 

  24. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298;1–24

    Article  PubMed  CAS  Google Scholar 

  25. Lakowicz JR (2005) Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194

    Article  PubMed  CAS  Google Scholar 

  26. Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy colloids and surfaces. A: Physicochemical and Eng Aspects 171:115–130

    Article  CAS  Google Scholar 

  27. Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169

    Article  PubMed  CAS  Google Scholar 

  28. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, New York

    Google Scholar 

Download references

Acknowledgments

KA and CDG acknowledges UMBI, the CFS (to CDG) and the IoF for salary support. Additional support from the National Center for Research Resources, RR- 08119 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, K., Malyn, S.N. & Geddes, C.D. Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission. J Fluoresc 17, 7–13 (2007). https://doi.org/10.1007/s10895-006-0149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0149-x

Keywords

Navigation