Skip to main content
Log in

Domain Formation in DODAB–Cholesterol Mixed Systems Monitored via Nile Red Anisotropy

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The effect of the cholesterol (ch) on liposomes composed of the cationic lipid dioctadecyldimethylammonium bromide (DODAB) was assessed by studying both the steady-state and time-resolved fluorescence anisotropy of the dye Nile Red. The information obtained combined with analysis of the steady-state emission and fluorescence lifetime of Nile Red (NR) for different cholesterol concentrations (5–50%) elucidated the presence of “condensed complexes” and cholesterol-rich domains in these mixed systems. The steady-state fluorescence spectra were decomposed into the sum of two lognormal emissions, emanating from two different states, and the effect of temperature on the anisotropy decay of Nile Red for different cholesterol concentrations was observed. At room temperature, the time-resolved anisotropy decays are indicative of NR being relatively immobile (manifest by a high r value). At higher temperature, rotational times ca. 1 ns were obtained throughout and a trend in increasing hindrance was seen with increase of Ch content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martim, and P. L. Felgner (1994). Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.

    PubMed  CAS  Google Scholar 

  2. D. D. Lasic (1995). In D. D. Lasic and Yechezkel Barenholz (Eds.), Handbook of Nonmedical Applications of Liposomes: From Gene Delivery and Diagnostic to Ecology, CRC Press, New York, Vol. IV, pp. 1–32.

  3. D. D. Lasic and D. Ruff (1998). In D. D. Lasic and D. Papahadjoupoulos (Eds.), Medical Applications of Liposomes, Elsevier, Netherlands, pp. 353–394.

  4. R. B. Campbell, V. Sathyamangalam, Balasubramanian, and R. M. Straubinger, (2001). Phospholipid-cationic lipid interactions: Influences on membrane and vesicle properties. Biochim. Biophys. Acta 1512, 27–39.

    Article  PubMed  CAS  Google Scholar 

  5. D. Hirsch-Lerner and Y. Barenholz (1999). Hydration of lipoplexes commonly used in gene delivery: Follow-up by Laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochim. Biophys. Acta 1461, 47–57.

    Article  PubMed  CAS  Google Scholar 

  6. S. J. Eastman, C. Siegel, J. Tousignant, A. E. Smoth, S. H. Cheng, and R. K. Scheule (1997). Biophysical characterization of cationic lipid:DNA complexes. Biochim. Biophys. Acta 1325, 41–62.

    Article  PubMed  CAS  Google Scholar 

  7. L. Ciani, S. Ristori, A. Salvati, L. Calamai, and G. Martini (2004). DOTAP/DOPE and DC-chol/DOPE lipoplexes for gene delivery: Zeta potential measurements and electron spin resonance spectra. Biochim. Biophys. Acta 1664, 70–79.

    Article  PubMed  CAS  Google Scholar 

  8. Y. S. Mel'nikova, S. M. Mel'nikov, and J.-E. Löfroth (1999). Physico-chemical aspects of the interaction between DNA and oppositely charged mixed liposomes. Biophys. Chem. 81, 125–141.

    Article  PubMed  Google Scholar 

  9. Y. Zhang and T. J. Anchordoquy (2004). The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. Biochim. Biophys. Acta 1663, 143–157.

    Article  PubMed  CAS  Google Scholar 

  10. P. L. Yeagle (1988) The Biology of Cholesterol, CPC Press, Boca Raton, FL, pp. 242.

    Google Scholar 

  11. A. M. Samuni, A. Lipman, and Y. Barenholz (2000). Damage to liposomal lipids: Protection by antioxidants and Cholestrol-mediated dehydration. Chem. Phys. Lipids 105, 121–134.

    Article  PubMed  CAS  Google Scholar 

  12. S. L. Veatch and S. L. Keller (2002). Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 26, 268101-1–268101-4.

    Google Scholar 

  13. D. Bach and E. Wachtel (2003). Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochim. Biophys. Acta 1610, 187–197.

    Article  PubMed  CAS  Google Scholar 

  14. R. Preston Mason, T. N. Tulenko, and R. F. Jacob (2003). Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochim. Biophys. Acta 1610, 198–207.

    Article  PubMed  CAS  Google Scholar 

  15. H. M. McConnell and A. Radhakrishnan (2003). Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610, 159–173.

    Article  PubMed  CAS  Google Scholar 

  16. A. Genz, F. Holzwarth, and T. Tsong (1986). The influence of cholesterol on the main phase transition of unilamellar dipalmitoylphosphatidylcholine vesicles. A differential scanning calorimetry and iodine laser T-jump study. Biophys. J. 50, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  17. G. Cevc, and H. Richardsen (1999). Lipid vesicles and membrane fusion. Adv. Drug Delivery Rev. 38, 207–232.

    Article  CAS  Google Scholar 

  18. A. L. Baley and P. R. Cullis (1997). Membrane fusion with cationic liposomes: Effects of target membrane lipid composition. Biochemistry 36, 1628–1634.

    Article  Google Scholar 

  19. S. Koronkiewicz and S. Kalinowski (2004). Influence of cholesterol on electroporation of bilayer lipid membranes: Chronopotentiometric studies. Biochim. Biophys. Acta 1661, 196–203.

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Carmona-Ribeiro (1992). Synthetic amphiphile vesicles. Chem. Soc. Rev. 21, 209–214.

    Article  CAS  Google Scholar 

  21. E. Feitosa, P. C. A. Barreleiro, and G. Olofsson (2000). Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods. Chem. Phys. Lipids 105, 201–213.

    Article  PubMed  CAS  Google Scholar 

  22. P. C. A. Barreleiro (2001). Equilibrium and Kinetic Studies of the Binding of DNA to Cationic Lipids, PhD Thesis, University of Lund, Lund, Sweden.

  23. O. G. Mouritsen and K. Jorgensen (1997). Small scale lipid membrane structure. Current Opin. Struct. Biol. 7, 518–527.

    Article  CAS  Google Scholar 

  24. Ira and G. Krishnamoorthy (2001). Probing the link between proton transport and water content in lipid membranes. J. Phys. Chem. B 105, 1484–1488.

    Article  CAS  Google Scholar 

  25. G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. G. Miguel, and H. D. Burrows (2002). Monitoring ternary systems of C12E5/water/tetradecane via fluorescence of solvatochromic probes. J. Phys. Chem. B 106, 4061–4069.

    Article  CAS  Google Scholar 

  26. P. J. G. Coutinho, E. M. S. Castanheira, M. C. Rei, and M. E. C. D. Real Oliveira, (2002). Nile Red and DCM fluorescence anisotropy studies in C12E7-DPPC mixed systems. J. Phys. Chem. B 106, 12841–12846.

    Article  CAS  Google Scholar 

  27. Ira and G. Krishnamoorthy (2001). Fluorescence lifetime distribution in characterizing membrane heterogeneity. J. Fluoresc. 11, 247–253.

    Article  Google Scholar 

  28. M. M. G. Krishna (1999). Excited-state kinetics of the hydrophobic probe Nile Red in membranes and micelles. J. Phys. Chem. A 103, 3589–3595.

    Article  CAS  Google Scholar 

  29. R. Steiner (1999). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 2, Plenum Press, New York, pp. 1–52.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elisabete C. D. Real Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungerford, G., Castanheira, E.M.S., Baptista, A.L.F. et al. Domain Formation in DODAB–Cholesterol Mixed Systems Monitored via Nile Red Anisotropy. J Fluoresc 15, 835–840 (2005). https://doi.org/10.1007/s10895-005-0014-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0014-3

KEY WORDS:

Navigation