Skip to main content

Advertisement

Log in

Tungsten Blister Formation Kinetic as a Function of Fluence, Ion Energy and Grain Orientation Dependence Under Hydrogen Plasma Environment

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

This work deals with the formation kinetic of tungsten (W) blisters under smooth plasma conditions, i.e. low hydrogen flux and energy in order to analyze the first stages of their formation. In addition, we focus on determining the W grain orientation where blisters grow preferentially. For this purpose, mirror-polished polycrystalline tungsten samples were exposed to hydrogen plasma under fixed hydrogen flux of 2.2 × 1020 m−2 s−1, with a fluence in the range of ~ 1024 m−2, ion energy of ~ 20, 120 and 220 eV, and sample surface temperature of ~ 500 K. The formation of blisters at the surface was investigated using SEM, AFM and EBSD to determine the size, the distribution and the orientation of grain where blisters are formed, respectively. The critical fluence for initiating blisters was established around 2.3 × 1024 m−2. The evolution of blister size distribution and density is discussed as function of fluence and ion energy. At lower ion energy, i.e. 20 eV, only nanoblisters (less than 150 nm) are observed whatever the fluence value (1.5 and 2.3 × 1024 m−2). At higher ion energy i.e. 120 and 220 eV, micrometric (~ few to tens of µm) blisters are observed and their density highly depends on fluence. We show that blisters can also be formed on (001) oriented grains contrarily to previous results from the literature where the (111) orientation seemed more favorable. Such information is of importance for tungsten based fusion tokamak operation and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.P. Medeiros, M.H. Alencar, A.T. de Almeida, Hydrogen pipelines: enhancing information visualization and statistical tests for global sensitivity analysis when evaluating multidimensional risks to support decision-making. Int. J. Hydrog. Energy 41, 22192–22205 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.113

    Article  Google Scholar 

  2. T. An, H. Peng, P. Bai, S. Zheng, X. Wen, L. Zhang, Influence of hydrogen pressure on fatigue properties of X80 pipeline steel. Int. J. Hydrog. Energy 42, 15669–15678 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.047

    Article  Google Scholar 

  3. Y. Yürüm, A. Taralp, T.N. Veziroglu, Storage of hydrogen in nanostructured carbon materials. Int. J. Hydrog. Energy 34, 3784–3798 (2009). https://doi.org/10.1016/j.ijhydene.2009.03.001

    Article  Google Scholar 

  4. D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko et al., Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrog. Energy 41, 1811–1818 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.011

    Article  Google Scholar 

  5. E. Fakioğlu, Y. Yürüm, Veziroğlu T. Nejat, A review of hydrogen storage systems based on boron and its compounds. Int. J. Hydrog. Energy 29, 1371–1376 (2004). https://doi.org/10.1016/j.ijhydene.2003.12.010

    Article  Google Scholar 

  6. W. Han, Y. Yan, J. Gu, Y. Shi, J. Tang, Y. Li, Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste. Int. J. Hydrog. Energy 41, 22619–22625 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.047

    Article  Google Scholar 

  7. J. Habibian, A. Salar Elahi, M. Ghoranneviss, M.K. Salem, S. Saviz, Plasma equilibrium reconstruction for the nuclear fusion of magnetically confined hydrogen isotopes. Int. J. Hydrog. Energy 41, 15266–15271 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.178

    Article  Google Scholar 

  8. F. Ren, W. Yin, Q. Yu, X. Jia, Z. Zhao, B. Wang, Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy. J. Nucl. Mater. 491, 206–212 (2017). https://doi.org/10.1016/j.jnucmat.2017.04.057

    Article  ADS  Google Scholar 

  9. A. Hu, A. Hassanein, Predicting hydrogen isotope inventory in plasma-facing components during normal and abnormal operations in fusion devices. J. Nucl. Mater. 465, 582–589 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.048

    Article  ADS  Google Scholar 

  10. I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, R.A. Barna, Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel. Int. J. Hydrog. Energy 42, 6401–6408 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.193

    Article  Google Scholar 

  11. B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures, in Spec Issue 6th International Conference on Hydrogen Safety ICHS 2015 19–21 Oct 2015 Yokohama Jpn 2017;42:7404–12. https://doi.org/10.1016/j.ijhydene.2016.05.145

  12. S. Ayadi, Y. Charles, M. Gaspérini, I. Caron Lemaire, T. Da Silva Botelho, Effect of loading mode on blistering in iron submitted to plastic prestrain before hydrogen cathodic charging. Int. J. Hydrog. Energy 42, 10555–10567 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.048

    Article  Google Scholar 

  13. X. Ren, W. Chu, J. Li, Y. Su, L. Qiao, The effects of inclusions and second phase particles on hydrogen-induced blistering in iron. Mater. Chem. Phys. 107, 231–235 (2008). https://doi.org/10.1016/j.matchemphys.2007.07.004

    Article  Google Scholar 

  14. A.V. Nikitin, G.D. Tolstolutskaya, V.V. Ruzhytskyi, V.N. Voyevodin, I.E. Kopanets, S.A. Karpov et al., Blister formation on 13Cr2MoNbVB ferritic-martensitic steel exposed to hydrogen plasma. J. Nucl. Mater. 478, 26–31 (2016). https://doi.org/10.1016/j.jnucmat.2016.05.032

    Article  ADS  Google Scholar 

  15. C. Quirós, J. Mougenot, G. Lombardi, M. Redolfi, O. Brinza, Y. Charles et al., Blister formation and hydrogen retention in aluminium and beryllium: A modeling and experimental approach. Nucl. Mater. Energy (2016). https://doi.org/10.1016/j.nme.2016.12.036

    Google Scholar 

  16. V. Philipps V, Tungsten as material for plasma-facing components in fusion devices, in Proceedings of 19th International Conference on Plasma-Surf aces Interactions Control Fusion 415:S2–S9 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.110

  17. S. Lang, Q. Yan, N. Sun, X. Zhang, C. Ge, Microstructures, mechanical properties and deuterium blistering behavior of chemically prepared W-TiC alloys. J. Fusion Energ. 36, 71–79 (2017). https://doi.org/10.1007/s10894-017-0124-3

    Article  Google Scholar 

  18. S. Semsari, A. Zakeri, A. Sadighzadeh, S. Khademzadeh, M. Sedaghat, M. Torabi et al., Comparison of high-energy He + and D + irradiation impact on tungsten surface in the IR-IECF device. J. Fusion Energ. 32, 142–149 (2013). https://doi.org/10.1007/s10894-012-9540-6

    Article  ADS  Google Scholar 

  19. M.V. Roshan, M.M. Darian, Experimental study of plasma materials’ interaction in plasma focus “Dena”. J. Fusion Energ. 22, 79–82 (2003). https://doi.org/10.1023/B:JOFE.0000021558.30726.01

    Article  ADS  Google Scholar 

  20. W.M. Shu, A. Kawasuso, Y. Miwa, E. Wakai, G.-N. Luo, T. Yamanishi, Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K. Phys. Scr. 2007, 96 (2007)

    Article  Google Scholar 

  21. M. Miyamoto, D. Nishijima, Y. Ueda, R.P. Doerner, H. Kurishita, M.J. Baldwin, S. Morito, K. Ono, J. Hanna, Observations of suppressed retention and blistering for tungsten exposed to deuterium–helium mixture plasmas. Nucl. Fusion 49, 065035 (2009)

    Article  ADS  Google Scholar 

  22. Armin Manhard, Martin Balden, Udo von Toussaint, Blister formation on rough and technical tungsten surfaces exposed to deuterium plasma. Nucl. Fusion 57, 126012 (2017)

    Article  ADS  Google Scholar 

  23. K. Ouaras, K. Hassouni, L.C. Delacqua, G. Lombardi, D. Vrel, X. Bonnin, Tungsten dust nanoparticles generation from blistering bursts under hydrogen environment in microwave ECR discharge. J. Nucl. Mater. 466, 65–68 (2015). https://doi.org/10.1016/j.jnucmat.2015.07.035

    Article  ADS  Google Scholar 

  24. K. Ouaras, S. Dine, D. Vrel, X. Bonnin, M. Redolfi, G. Lombardi et al., Synthesis and hydrogen plasma interaction of model mixed materials for fusion. Int. J. Hydrog. Energy 39, 17422–17428 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.021

    Article  Google Scholar 

  25. K. Ouaras, L.C. Delacqua, G. Lombardi, J. Röpcke, M. Wartel, X. Bonnin et al., In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry. J. Plasma Phys. 80, 833–841 (2014). https://doi.org/10.1017/S0022377814000361

    Article  ADS  Google Scholar 

  26. M.H.J. ‘tHoen, D. Dellasega, A. Pezzoli, M. Passoni, A.W. Kleyn, P.A. Zeijlmans van Emmichoven et al., Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma. PLASMA-Surf. Interact. 21, 463–989 (2014). https://doi.org/10.1016/j.jnucmat.2014.11.025

    Google Scholar 

  27. M.H.J. ’tHoen, M. Balden, A. Manhard, M. Mayer, S. Elgeti, A.W. Kleyn, P.A. Zeijlmans van Emmichoven et al., Surface morphology and deuterium retention of tungsten after low- and high-flux deuterium plasma exposure. Nucl. Fusion 54, 083014 (2014)

    Article  ADS  Google Scholar 

  28. H.Y. Xu, G. De Temmerman, G.-N. Luo, Y.Z. Jia, Y. Yuan, B.Q. Fu et al., Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma. PLASMA-Surf. Interact. 21(463), 308–311 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.039

    Google Scholar 

  29. F. Liu, H. Ren, S. Peng, K. Zhu, Effect of crystal orientation on low flux helium and hydrogen ion irradiation in polycrystalline tungsten. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 333, 120–123 (2014). https://doi.org/10.1016/j.nimb.2014.04.004

    Article  ADS  Google Scholar 

  30. C.M. Parish, H. Hijazi, H.M. Meyer, F.W. Meyer, Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes. Acta Mater. 62, 173–181 (2014). https://doi.org/10.1016/j.actamat.2013.09.045

    Article  Google Scholar 

  31. O. El-Atwani, S. Gonderman, M. Efe, G. De Temmerman, T. Morgan, K. Bystrov, J.P. Allain, Ultrafine tungsten as a plasma-facing component in fusion devices: effect of high flux, high fluence low energy helium irradiation. Nucl. Fusion 54(8), 083013 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ANR project ANR-09-BLAN-0070-01 (CRWTH), and by FR-FCM under contract 1IPH.FR.13.31. Special thanks are due to Ovidiu Brinzia for his assistance in obtaining the EBSD patterns micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ouaras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaras, K., Redolfi, M., Vrel, D. et al. Tungsten Blister Formation Kinetic as a Function of Fluence, Ion Energy and Grain Orientation Dependence Under Hydrogen Plasma Environment. J Fusion Energ 37, 144–153 (2018). https://doi.org/10.1007/s10894-018-0161-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0161-6

Keywords

Navigation