Skip to main content
Log in

FLUKA Simulations of DPA in 6H–SiC Reactor Blanket Material Induced by Different Radiation Fields Frequently Mentioned in Literature

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) is used extensively for the production of high-tech semiconductor devices. Today the use of this material in radiation environments such as fusion reactors creates excitement in the nuclear industry. Specific radiation types and energies which semiconductors were frequently exposed are of great value in terms of high-tech device studies. We used FLUKA simulation code to investigate radiation induced effects in 6H–SiC for different energetic protons, neutrons, photons and electrons in this paper. We analyzed displacement per atom values taking account of the simulation results in a very large perspective of radiation type and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Matsuura, H. Yanagisawa, K. Nishino, Y. Myojin, T. Nojiri, Y. Matsuyam, T. Ohshima, Phys. B 404, 4755–4757 (2009)

    Article  ADS  Google Scholar 

  2. E.R. Hodgson, M. Malo, J. Manzano, A. Moroño, T. Hernandez, J. Nucl. Mater. 417, 421–424 (2011)

    Article  ADS  Google Scholar 

  3. B.H. Cheong, K.H. Lee, K.J. Chang, Phys. Rev. B 49(7), 4485–4493 (1994)

    Article  ADS  Google Scholar 

  4. M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H.C. Jung, T. Hinoki, A. Kohyama, J. Nucl. Mater. 417, 379–382 (2011)

    Article  ADS  Google Scholar 

  5. H. Matsuura, S. Kagamihara, Y. Itoh, T. Ohshima, H. Itoh, Microelectron. Eng. 83, 17–19 (2006)

    Article  Google Scholar 

  6. C. Theis, K.H. Buchegger, M. Brugger, D. Forkel-Wirth, S. Roesler, H. Vincke, Nucl. Instrum. Meth. A 562, 827–829 (2006)

    Article  ADS  Google Scholar 

  7. M. Kozubal, P. Kaminski, R. Kozlowski, E. Tymicki, K. Grasza, S. Warchol, Superlattice Microst. 45, 402–406 (2009)

    Article  ADS  Google Scholar 

  8. A. Kawasuso, M. Yoshikawa, H. Itoh, R. Krause-Rehberg, F. Redmann, T. Higuchi, K. Betsuyaku, Phys. B 376, 350–353 (2006)

    Article  ADS  Google Scholar 

  9. J.W. Steeds, Nucl. Instrum. Meth. B 269, 1702–1706 (2011)

    Article  ADS  Google Scholar 

  10. D.J. Brink, J.B. Malherbe, J. Camassel, Nucl. Instrum. Meth. B 267, 2716–2718 (2009)

    Article  ADS  Google Scholar 

  11. E.Z. Jin, L.S. Niu, Vacuum 86, 917–923 (2012)

  12. A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, S. Ferrero, F. Giorgis, J. Appl. Phys. 98, 053706 (2005)

    Article  ADS  Google Scholar 

  13. B. Tsuchiya, T. Shikama, S. Nagata, K. Saito, S. Yamamoto, S. Ohnishi, T. Nozawa, Fusion Eng. Des. 86, 2487–2490 (2011)

    Article  Google Scholar 

  14. J.R. Srour, C.J. Marshall, P.W. Marshall, IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003)

    Article  ADS  Google Scholar 

  15. G. Battistoni, S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fassó, J. Ranft, in Proceedings of the Hadronic Shower Simulation Workshop 2006, Fermilab (6–8 September 2006)

  16. M. Albrow, R. Raja (eds)., in Proceedings of the AIP Conference, vol. 896, pp. 31–49 (2007)

  17. A. Fasso, A. Ferrari, J. Ranft, P.R. Sala, in CERN-2005-10, INFN/TC 05/11, SLAC-R-773 (2005)

  18. X.S. Mao, J.C. Liu, A.B. Rosenfeld, M.L.F. Lerch, G. Lum, P.J. Griffin, A.G. Holmes-Siedle, in 13th International Conference on Solid State Dosimetry, Jerusalem, Israel, SLAC-PUB-8517, 7/9/2001–7/13/2001 (2001)

  19. J. Mekki, L. Dusseau, M. Glaser, S. Guatelli, M. Moll, M.G. Pia, F. Ravotti, IEEE Trans. Nucl. Sci. 56(4), 2061–2069 (2009)

    Article  ADS  Google Scholar 

  20. F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. Van Laarhoven, D.C. Look, Appl. Phys. Lett. 79(19), 3074–3076 (2001)

    Article  ADS  Google Scholar 

  21. P.A. Karmarkar, B. Jun, D.M. Fleetwood, R.D. Schrimpf, R.A. Weller, B.D. White, L.J. Brillson, U.K. Mishra, IEEE Trans. Nucl. Sci. 51(6), 3801–3806 (2004)

    Article  ADS  Google Scholar 

  22. R. Leon, G.M. Swift, B. Magness, W.A. Taylor, Y.S. Tanga, K.L. Wang, P. Dowd, Y.H. Zhang, Appl. Phys. Lett. 76(15), 2074–2076 (2000)

    Article  ADS  Google Scholar 

  23. B.D. Evans, H.E. Hager, B.W. Hughlock, IEEE Trans. Nucl. Sci. 40(6), 1645–1654 (1993)

    Article  ADS  Google Scholar 

  24. A. Jasenek, U. Raul, T. Hahn, G. Hanna, M. Schmidt, M. Hartmann, H.W. Schock, J.H. Werner, B. Schattat, S. Kraft, K.-H. Schmid, W. Bolse, Appl. Phys. A 70, 677–680 (2000)

    ADS  Google Scholar 

  25. S. Nigam, K. Jihyun, F. Ren, G.Y. Chung, M.F. MacMillan, R. Dwivedi, T.N. Fogarty, R. Wilkins, K.K. Allums, C.R. Abernathy, S.J. Peartona, J.R. Williams, Appl. Phys. Lett. 81(13), 2385–2387 (2002)

    Article  ADS  Google Scholar 

  26. B. Khare, M. Meyyappan, M.H. Moore, P. Wilhite, H. Imanaka, B. Chen, Nano Lett. 3(5), 643–646 (2003)

    Article  ADS  Google Scholar 

  27. J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, W.K. Metzger, S. Kurtz, J. Appl. Phys. 94, 6477–6483 (2003)

    Article  ADS  Google Scholar 

  28. K. Hayama, K. Takakura, H. Ohyama, J.M. Rafí, A. Mercha, E. Simoen, C. Claeys, M. Kokkoris, IEEE Trans. Nucl. Sci. 51(6), 3795–3800 (2004)

    Article  ADS  Google Scholar 

  29. J. Bartko, K.H. Sun, U. S. Pat. 4056408, 1–11 (1977)

    Google Scholar 

  30. G.C. Messenger, IEEE Trans. Nucl. Sci. 39(3), 468–473 (1992)

    Article  ADS  Google Scholar 

  31. P.J. Griffin, J.G. Kelly, T.F. Luera, A.L. Barry, M.S. Lazo, IEEE Trans. Nucl. Sci. 38(6), 1216–1222 (1991)

    Article  ADS  Google Scholar 

  32. G.P. Summers, E.A. Burke, C.J. Dala, E.A. Wolfeki, P.W. Marshall, E.A. Cehlhausen, IEEE Trans. Nucl. Sci. 34(6), 1134 (1987)

    Article  ADS  Google Scholar 

  33. K. Gill, in European Organization for Nuclear Research. CERN-PPE/97-11 (1997)

  34. A.M. Goodman, L.A. Goodman, J.P. Russell, P.H. Robinson, U. S. Pat. 4684413, 36–45 (1987)

    Google Scholar 

  35. M. Bertolotti, T. Papa, D. Sette, G. Vitali, J. Appl. Phys. 38(6), 2645–2647 (1967)

    Article  ADS  Google Scholar 

  36. J.R. Srour, R.A. Hartmann, IEEE Trans. Nucl. Sci. 36(6), 1825–1830 (1989)

    Article  ADS  Google Scholar 

  37. E. Fretwurst, H. Herdan, G. Lindström, U. Pein, M. Rollwagen, H. Schatz, P. Thomsen, R. Wunstorf, Nucl. Instrum. Meth. A 288(1), 1–12 (1990)

    Article  ADS  Google Scholar 

  38. L.A. Franks, B.A. Brunett, R.W. Olsen, D.S. Walsh, G. Vizkelethy, J.I. Trombka, B.L. Doyle, R.B. James, Nucl. Instrum. Meth. A 428, 95–101 (1999)

    Article  ADS  Google Scholar 

  39. F.H. Ruddy, A.R. Dulloo, J.G. Seidel, M.K. Das, S.-H. Rayu, A.K. Agarwal, Semiconductor radiation detectors. IEEE Trans. Nucl. Sci. 53(3), 1666–1670 (2006)

    Article  ADS  Google Scholar 

  40. M.A. Xapos, G.P. Summers, C.C. Blatchley, C.W. Colerico, E.A. Burke, S.R. Messenger, P. Shapiro, IEEE Trans. Nucl. Sci. 41(6), 1945–1949 (1994)

    Article  ADS  Google Scholar 

  41. G.P. Summers, E.A. Burke, R.J. Walters, IEEE Trans. Nucl. Sci. 40(6), 1372–1379 (1993)

    Article  ADS  Google Scholar 

  42. J.C. Garth, E.A. Burke, S. Woolf, IEEE Trans. Nucl. Sci. 32(6), 4382–4387 (1985)

    Article  ADS  Google Scholar 

  43. L.E. Antonuk, J. Yorkston, J. Boudry, M.J. Longo, J. Jimenez, R.A. Street, IEEE Trans. Nucl. Sci. 32(6), 4382–4387 (1990)

    Google Scholar 

  44. A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, P.M. Ajayan, Nano Lett. 5(8), 1575–1579 (2005)

    Article  ADS  Google Scholar 

  45. Y. Masafumi, J. Appl. Phys. 78(3), 1476–1480 (1995)

    Article  Google Scholar 

  46. C.T. Sah, J.Y.-C. Sun, J.J.-T. Tzou, S.C.-S. Pan, Appl. Phys. Lett. 43(10), 962–964 (1983)

    Article  ADS  Google Scholar 

  47. S. Mueller, in 2nd CARAT Workshop GSI

  48. V. Vlachoudis, G. Smirnov, A. Ferrari, in DPA for FLUKA. FLUKA Users Meeting (2008)

  49. K. Yoshioka, H. Nakashima, M. Ohta, KARIN-1. J. Fusion Energ. 3(3), 173 (1983)

    Article  Google Scholar 

  50. U. Singh, N. Kumar, L.P. Purohit, A.K. Sinha, J. Fusion Energ. 30, 180–183 (2011)

    Article  Google Scholar 

  51. V. Vlachoudis, in FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA. Proceedings of the International Conference on Mathematics, Computational Methods and Reactor Physics (M&C 2009) (Saratoga Springs, New York, 2009)

Download references

Acknowledgments

This paper was supported by Ağrı İbrahim Çeçen University (Project Number: BAP/2010-F07). The authors wish to thank to Ağrı İbrahim Çeçen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatun Korkut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkut, T., Korkut, H. FLUKA Simulations of DPA in 6H–SiC Reactor Blanket Material Induced by Different Radiation Fields Frequently Mentioned in Literature. J Fusion Energ 32, 66–70 (2013). https://doi.org/10.1007/s10894-012-9525-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9525-5

Keywords

Navigation