Skip to main content
Log in

L-Glutamate in formation of long-term memory in the honeybee Apis mellifera

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Participation of metabotropic glutamate receptors (mGluR) in associative learning of the honeybee Apis mellifera was studied in behavioral and electrophysiological experiments with use of pharmacological analysis. By the method of conditioned reflexes, effects of systemic injections of mGluR agonists and antagonists were studied on retention of elaborated conditioned reflexes in short-term and long-term memory. Injection of aminocyclopentandicarbonic acid (ACPD), ibotenate, and phosphoserine stimulated the memory in 3 h after the single learning procedure. The long- term memory was inhibited by mGluR antagonists — methylcarboxyphenylglycine and amino- phosphonopropionate as well as by non-competitive antagonists of mGluR1(CPCCOEt) and of mGluR5 (SIB 1757). Electrophysiological experiments demonstrated changes of characteristics of the action potential recorded from mushroom bodxies in response to stimulation of antennal lobes and during injections of mGluR III phosphoserine and the mGluR1 antagonist CPCCOEt. The obtained data allow suggesting participation of different groups of metabotropic glutamate receptors in the process of the honeybee associative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Voskresenskaya, A.K., About the Role of Mushroom Bodies of the Supraesophageal Ganglion in Conditioned Reflexes of the Honeybee, Dokl. Akad. Nauk SSSR, 1957, vol. 112, pp. 964–967.

    Google Scholar 

  2. Menzel, R. and Muller, U., Learning and Memory in the Honeybees: From Behaviour to Neural Substrates, Ann. Rev. Neurosci., 1996, vol. 19, pp. 379–404.

    Google Scholar 

  3. Davis, R.L., Mushroom Bodies and Drosophila Learning, Neuron, 1993, vol. 11, pp. 1–14.

    Google Scholar 

  4. Menzel, R., Neurobiology of Learning and Memory. The Honeybee as a Model System, Naturwissensch., 1983, vol. 70, pp. 504–511.

    Google Scholar 

  5. Altfelder, K. and Muller, U., Cyclic Nucleotide Dependent Protein Kinases in the Neural Tissue of the Honeybee Apis mellifera, Insect Biochem., 1991, vol. 21, pp. 487–494.

    Google Scholar 

  6. Lopatina, N.G., Ryzhova, I.V., Chesnokova, E.G., and Dmitrieva, L.A., L-Glutamate Receptors in the Central Nervous System in the Honeybee Apis mellifera and their Role in the Process of Formation of Conditioned Reflex and of Memory Traces, Zh. Evol. Biokhim. Fiziol., 1997, vol. 33, pp. 506–514.

    Google Scholar 

  7. Neuhaus, B. and Muller, U., Involvement of Glutamate Metabolism in Honeybee Olfactory Learning, Proceedings of the 2001 Berlin Meeting of the European Section of IUSSI, 2001, p. 22

  8. Bicker, G., Schafer, S., Ottersen, O.P., and Storm-Mathisen, J., Glutamate-Like Immunoreactivity in Identified Neuronal Populations of Insect Nervous System, J. Neurosci., 1988, vol. 8, pp. 2108–2122.

    Google Scholar 

  9. Kucharski, R., Ball, E., Hayward, D., and Maleszka, R., Molecular Cloning and Expression Analysis of a cDNA Encoding a Glutamate Transporter in the Honeybee Brain, Gene, 2000, vol. 242, pp. 399–405.

    Google Scholar 

  10. Betz, H., Schuster, Ch., Ultsch, A., and Schmitt, B., Molecular Biology of Ionotropic Glutamate Receptors in Drosophila melanogaster, TIPS, 1993, vol. 14, pp. 428–431.

    Google Scholar 

  11. Lopatina, N.G., Ryzhova, I.V., Chesnokova, E.G., and Dmitrieva, L.A., N-Methyl-D-Aspartate Receptors in Formation of the Short-Term Memory in the Honeybee Apis mellifera, Zh. Evol. Biokhim. Fiziol., 2000, vol. 36, pp. 223–228.

    Google Scholar 

  12. Lopatina, N.G., Ryzhova, I.V., and Chesnokova, E.G., The Role of non-NMDA-Receptors in the Process of Associative Learning in the Honeybee Apis mellifera, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp.163–168.

    Google Scholar 

  13. Collingridge, G.L. and Litser, R.A.I., Excitatory Amino Acid Receptors in the Vertebrate Central Nervous System, Pharmacol. Rev., 1989, vol. 40, pp. 143–210.

    Google Scholar 

  14. Ozava, S., Kamura, H., and Tsuzuki, K., Glutamate Receptors in the Mammalian Central Nervous System, Progr. Neurobiol.. 1998, vol. 54, pp. 582–618.

    Google Scholar 

  15. Riedel, G., Function of Metabotropic Glutamate Receptor in Learning and Memory, Trends. Neurosci., 1996, vol. 19, N 6, pp. 219–224.

    Google Scholar 

  16. Nicoletti, F., Bruno, V., Catania, M.V., Battaglia, G., Copani, A., Barbagallo, G., Cena, V., Sanchez-Prieto, J., Spano, P.F., and Pizzi, M., Group-I Metabotropic Glutamate Receptors: Hypotheses to Explain Their Dual Role in Neurotoxicity and Neuroprotection, Neuropharmacol., 1999, vol. 38, pp. 1477–1484.

    Google Scholar 

  17. McCaffery, B., Cho, K., Bortolotto, Z.A., Aggleton, J.P., Brown, M.W., Conquet, F., Collingridge, G.L., and Bashir, Z.I., Synaptic Depression Induced by Pharmacological Activation of Metabotropic Glutamate Receptors in the Perirhinal Cortex in vitro, Neurosci., 1999, vol. 93, pp. 977–984.

    Google Scholar 

  18. Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G., Heterogenity of Metabotropic Glutamate Receptors in the Striatum: Electophysiological Evidence, Eur. J. Neurosci,, 1993, vol. 5, pp. 1370–1377.

    Google Scholar 

  19. Ryedel, G. and Reymann, K.G., Metabotropic Glutamate Receptors in Hippocampal Long-Term Potentiation and Learning and Memory, Acta Physiol. Scand., 1996, vol. 157, pp. 1–19.

    Google Scholar 

  20. Grassi, S. and Pettorossi, V.E., Synaptic Plasticity in the Medial Vestibular Nuclei: Role of Glutamate Receptors and Retrograde Messengers in Rat Brainstem Slices, Progr. Neurobiol., 2001, vol. 64, pp. 527–553.

    Google Scholar 

  21. Nakanishi, S., Metabotropic Glutamate Receptors: Synaptic Transmission, Modulation and Plasticity, Neuron, 1994, vol. 13, pp. 1031–1037.

    Article  Google Scholar 

  22. Nakanishi, S., Nakajima, Y., Masu, M., Veda, Y., Nakahara, K., Watanabe, D., Yamaguchi, S., Kawabata, S., and Okada, M., Glutamate Receptor: Brain Function and Signal Transduction, Brain Res. Rev., 1998, vol. 26, pp. 230–235.

    Google Scholar 

  23. Conn, P.J. and Pin, J.P., Pharmacology and Functions of Metabotropic Glutamate Receptors, Ann. Rev. Pharmacol. Toxicol., 1997, vol. 37, pp. 205–237.

    Google Scholar 

  24. Roberts, M., Metabotropic Glutamate Receptor Pharmacology, Neuropharmacol., 1995, vol. 34, no. 8, pp. 813–819.

    Google Scholar 

  25. Schoepp, D.D. and Conn, P.J., Metabotropic Glutamate Receptors in Brain Function and Pathology, TIPS, 1993, January, vol. 14, pp. 13–21.

    Google Scholar 

  26. McGahon, B. and Lynch, M.A., A Study of the Synergism between Metabotropic Glutamate Receptor Activation and Arachidonic Acid in the Rat Hippocampus, Neuroreport, 1994, vol. 5, pp. 2353–2357.

    Google Scholar 

  27. Schoepp, D.D., Pharmacological Properties of Metabotropic Glutamate Receptors, The Metabotropic Glutamate Receptors, Conn, P.J. and Platel, J., Eds., Humana, Totowa, N.J., USA: 1994, pp. 31–58.

  28. Nicoletti, F., Bruno, V., Copani, A., Casabona, G., and Knopfel, T., Matabotropic Glutamate Receptors: A New Target for the Therapy of Neurodegenerative Disorders, TINS, 1996, vol. 19, pp. 267–271.

    Google Scholar 

  29. Pellicciari, R., Costantino, G., Marrinozzi, M., Macchiarulo, A., Camaioni, E., and Natalini, B., Metabotropic Glutamate Receptors: Structure and New Subtype-Selective Ligands, Farmacol., 2001, vol. 56, pp. 91–94.

    Google Scholar 

  30. Besis, A.S., Acher, F., and Pin, J.P., Metabotropic Glutamate Receptors: Exciting Possibilities in Excitatory Transmission, Cel Transmiss., 1994, vol. 17, no. 3, pp. 3–10.

    Google Scholar 

  31. Gasparini, F., Floersheim, P., Flor, P.J., Heinrich, M., Inderbitzin, W., Ott, D., Parano, A., Stierlin, C., Stoehr, N., Vranesic, I., and Kuhn, R., Discovery and Characterization of Non-Competitive Antagonists of Group I Metabotropic Glutamate Receptors, Farmacol., 2001, vol. 56, pp. 95–99.

    Google Scholar 

  32. Ramaekers, A., Parmantier, M.-L., Lasnier, C., Bokaert, J., and Grau, Y., Distribution of Metabotropic Glutamate Receptor DmGlu-A in Drosophila melanogaster Central Nervous System, J. Ñîmð. Neurol., 2001, vol. 438, pp. 213–225.

    Google Scholar 

  33. Kaba, H., Hayashi, Y., Higuchi, T., and Nakanishi, S., Induction of an Olfactory Memory by the Activation of Metabotropic Glutamate Receptor, Science, 1994, vol. 265, pp. 262–264.

    Google Scholar 

  34. Darlison, M., Invertebrate GABA and Glutamate Receptors: Molecular Biology Reveals Predictable Structures but Some Unusual Pharmacology, TINS, 1992, vol. 15, no. 12, pp. 469–474.

    Google Scholar 

  35. Klunk, W., McClure, R.J., and Pettegrew, J.W., L-Phosphoserine, a Metabolite Elevated in Alzheimer’s Disease, Interacts with Specific L-Glutamate Receptor Subtypes, J. Neurochem., 1991, vol. 56, pp. 1997–2003.

    Google Scholar 

  36. Thoreson, W. and Ulphani, J., Pharmacology of Selective and Non-Selective Metabotropic Glutamate Receptor Agonists at L-AP-4 Receptors in Retinal on Bipolar Cells, Brain Res., 1995, vol. 676, p. 93.

    Google Scholar 

  37. Ohno, M. and Watanabe, S., Concurrent Blockade of Hippocampal Metabotropic Glutamate and NMDA Receptors Disrupts Working Memory in the Rat, Neurosci., 1996, vol. 70, pp. 303–311.

    Google Scholar 

  38. Rickard, N.S., Blockade of Metabotropic Glutamate Receptors Prevents Long-Term Memory Consolidation, Brain Res. Bull., 1995, vol. 36, no. 4, pp. 355–359.

    Google Scholar 

  39. Menzel, R., Memory Dynamics in the Honeybees, J. Comp. Physiol., 1999, vol. 185, pp. 323–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 40, No. 6, 2004, pp. 539–545.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatina, N.G., Ryzhova, I.V., Zachepilo, T.G. et al. L-Glutamate in formation of long-term memory in the honeybee Apis mellifera . J Evol Biochem Phys 40, 662–670 (2004). https://doi.org/10.1007/s10893-004-0007-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10893-004-0007-x

Keywords

Navigation