Skip to main content
Log in

Investigation of the Melting of Silicate Materials as a Result of Exposure to Low-Temperature Plasma

  • HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The paper presents a mathematical model and the results of calculating the process of melting of silicate materials as a result of their exposure to low-temperature plasma. In the case of a low temperature of the gaseous region exceeding insignificantly the silicate melting temperature, the phase transition is preceded by a quite long induction period characterized by the material′s heating from the initial temperature to the melting temperature. After the completion of this stage, a melting process begins accompanied by a shift of the interphase boundary deeper into the material. With increase in the initial gas temperature the duration of the induction period decreases. It has been established that the velocity of the melting front propagation is determined by the initial temperature of the gas phase and the thermophysical characteristics of the material but is weakly dependent on the fill layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Apkaryan and S. N. Kulkov, Formation of structure and closed porosity under high-temperature firing of granules of porous glass-ceramic material, Inorg. Mater. Appl. Res., 9, 286–290 (2018); https://doi.org/10.1134/S207511331802003X.

  2. F. Vetere, A. Mazzeo, D. Perugini, and F. Holtz, Viscosity behaviour of silicate melts during cooling under variable shear rates, J. Non-Crystalline Solids, 533, Article ID 119902 (2020); https://doi.org/10.1016/j.jnoncrysol.2020.119902.

  3. L. Gan, Y. Zhou, and L. Jiao, High temperature viscosity limit of silicate melts with least fitting error, High Temp. — High Pressures, 46, No. 6, 417–430 (2017).

  4. L. P. Kholpanov and A. K. Nekrasov, Mathematical modeling of the hydrodynamics and heat transfer in a plasmotron reactor of high-temperature treatment of disperse materials, Pis′ma Zh. Tekh. Fiz., 36, No. 17, 78–86 (2010); https://doi.org/10.1134/S1063785010090129.

    Article  Google Scholar 

  5. L. Miao and Yu. M. Grishin, On the selection of parameters of a high-frequency induction plasmotron and dispersed flow of evaporated quartz particles, Pis′ma Zh. Tekh. Fiz., 90, No. 7, 1068–1075 (2020); doi: https://doi.org/10.1134/S1063784220070130.

    Article  Google Scholar 

  6. O. G. Volokitin, M. A. Sheremet, V. V. Shekhovtsov, N. S. Bondareva, and V. I. Kuz′min, Investigation of convective heat transfer regimes in obtaining high-temperature silicate melts, Teplofiz. Aéromekh., 23, No. 5, 789–800 (2016); https://doi.org/10.1134/S0869864316050140.

    Article  Google Scholar 

  7. V. A. Vlasov, O. G. Volokitin, G. G. Volokitin, N. K. Skripnikova, and V. V. Shekhovtsov, Calculation of the meting process of a quartz particle under low-temperature plasma conditions, J. Eng. Phys. Thermophys., 89, No. 1, 152–156 (2016); doi: https://doi.org/10.1007/s10891-016-1362-3.

    Article  Google Scholar 

  8. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).

    Google Scholar 

  9. L. I. Rubinshtein, Stefan Problem [in Russian], Zvaizgne, Riga (1967).

  10. J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford (1984).

    MATH  Google Scholar 

  11. V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publ. Corp., Washington DC (1993).

    Google Scholar 

  12. A. M. Meirmanov, Stefan Problem [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  13. E. Javierre-Pérez, Literature Study: Numerical Methods for Solving Stefan Problems, Report 03-16, Delft University of Technology, Delft (2003).

    Google Scholar 

  14. J. Caldwell and Y. Y. Kwan, Numerical methods for one-dimensional Stefan problems, Commun. Numer. Meth. Eng., No. 20, 535–545 (2004).

  15. N. A. Krasnoshlyk and A. O. Bogatyrev, Numerical solution of problems with moving interphase boundaries, Visn. Cherkas. Univ. Ser. Prikl. Mat. Inform., 194, 16–31 (2011).

    Google Scholar 

  16. B. M. Budak, E. N. Solov′eva, and A. B. Uspenskii, Finite difference method with smoothing coefficients for solving Stefan problems, Zh. Vychisl. Mat. Mat. Fiz., 5, No. 5, 828–840 (1965).

    Google Scholar 

  17. A. A. Samarskii and B. D. Moiseenko, Economical shock-capturing scheme for a multidimensional Stefan problem, Zh. Vychisl. Mat. Mat. Fiz., 5, No. 5, 816–827 (1965).

    Google Scholar 

  18. P. V. Bereslavskii and V. I. Mazhukin, Algorithm of numerical solution of a hydrodynamic version of the Stefan problem using dynamically adapting grids, Mat. Modelir., 3, No. 10, 104–115 (1991).

    Google Scholar 

  19. A. I. Borodin, Modeling of heat transfer in a homogeneous medium in the presence of phase transition, J. Eng. Phys. Thermophys., 85, No. 2, 439–445 (2012).

    Article  Google Scholar 

  20. A. I. Borodin and A. A. Ivanova, Modeling of the temperature field of a continuously cast ingot with determination of the position of the phase-transition boundary, J. Eng. Phys. Thermophys., 87, No. 2, 507–512 (2014).

    Article  Google Scholar 

  21. E. E. Slyadnikov, Yu. A. Khon, P. P. Kaminskii, and I. Yu. Turchanovskii, Kinetics of nonequilibrium melting of a macrosystem under the action of a volume heat source, J. Eng. Phys. Thermophys., 93, No. 2, 389–400 (2020).

    Article  Google Scholar 

  22. A. D. Chernyshov, Solution of the Stefan two-phase problem with an internal source and heat conduction problems by the method of rapid expansions, J. Eng. Phys. Thermophys., 94, No. 1, 96–112 (2021).

    Article  Google Scholar 

  23. O. V. Matvienko, Heat transfer and formation of turbulence in an internal swirling fluid flow at low Reynolds numbers, J. Eng. Phys. Thermophys., 87, No. 4, 940–950 (2014); https://doi.org/10.1007/s10891-014-1092-3.

    Article  Google Scholar 

  24. V. A. Arkhipov, O. V. Matvienko, and V. F. Trofimov, Combustion of dispersed liquid fuel in a swirling flow, Fiz. Goren. Vzryva, 41, No. 2, 26–37 (2005).

    Google Scholar 

  25. V. M. Ushakov and O. V. Matvienko, Numerical investigation of the heat exchange and firing of reactive channel walls by a high-temperature swirling-gas flow, J. Eng. Phys. Thermophys., 78, No. 3, 541–547 (2005).

    Article  Google Scholar 

  26. S. Patankar, Numerical Heat Transfer and Fluid Flow [Russian translation], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  27. K. Johnson, Numerical Methods in Chemistry [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  28. V. V. Shekhovtsov, O. G. Volokitin, and O. V. Matvienko, Mathematical modeling of the process of melting silicate materials in a plasma reactor, Izv. Vyssh. Uchebn. Zaved., Fizika, 64, No. 8 (765), 57–64 (2021); doi: https://doi.org/10.17223/00213411/64/8/57.

  29. I. S. Grigor′ev and E. Z. Meilikhov (Eds.), Physical Values. Handbook [in Russian], Énergoatomizdat, Moscow (1991).

  30. A. V. Luikov, Heat and Mass Transfer: Handbook [in Russian], Énergiya, Moscow (1978).

    Google Scholar 

  31. O. G. Volokitin, V. I. Vereshchagin, and V. V. Shekhovtsov, Processes of obtaining a quartz sand melt in low-temperature plasma aggregates, Izv. Vyssh. Uchebn. Zaved., Ser.: Khim. Khim. Tekhnol., 58, No. 1, 62–65 (2015).

  32. O. G. Volokitin and V. V. Shekhovtsov, Processes of obtaining silicate melts and materials on their basis in a lowtemperature plasma, Vest. Tomsk. Gos. Arkhit.-Stroit. Univ., No. 1 (60), 144–148 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 1, pp. 152–161, January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Volokitin, O.G. & Shekhovtsov, V.V. Investigation of the Melting of Silicate Materials as a Result of Exposure to Low-Temperature Plasma. J Eng Phys Thermophy 96, 150–159 (2023). https://doi.org/10.1007/s10891-023-02671-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02671-7

Keywords

Navigation