Skip to main content
Log in

Numerical Simulation of Thermoelectronic Thermal Protection in the Case of High Enthalpy Flow Past a Multilayer Shell

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A mathematical model of the process of unsteady conjugate heat transfer of a thermionic thermal protection system during supersonic air flow around a spherically-blunted cone is investigated. Estimates of the effect of evaporation (emission) of electrons from the emitter surface on lowering the temperature of the composite shell of the thermoelectronic thermal protection are made. The influence of different angles of attack on heat transfer modes in the system of multielement thermionic thermal protection has been studied. Qualitative agreement of calculated results with the known data has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Polezhaev and F. B. Yurevich, Heat Shielding [in Russian], Énergiya, Moscow (1976).

  2. S. V. Reznik, P. V. Prosuntsov, and K. V. Mikhailovskii, Prediction of thermophysical and thermomechanical characteristics of porous carbon–ceramic composite materials of the heat shield of aerospace craft, J. Eng. Phys. Thermophys., 88, No. 3, 591–601 (2015).

    Google Scholar 

  3. A. M. Grishin, A. N. Golovanov, V. I. Zinchenko, K. N. Efimov, and A. S. Yakimov, Mathematical and Physical Modeling of Thermal Protection [in Russian], Izd. Tomsk. Univ., Tomsk (2011).

  4. V. V. Gorskii, Theoretical Principles of Calculating Ablative Thermal Protection [in Russian], Nauchnyi Mir, Moscow (2015).

  5. A. S. Yakimov, Thermal Protection Modeling of Hypersonic Flying Apparatus. Springer, Switzerland (2018).

    Book  Google Scholar 

  6. K. N. Efimov, V. A. Ovchinnikov, and A. S. Yakimov, Influence of the rotation of a blunt-nose cone on the heat exchange in the supersonic flow over it at an angle of attack, J. Eng. Phys. Thermophys., 91, No. 5, 1199–1210 (2018).

    Article  Google Scholar 

  7. V. A. Kernozhitskii, A. V. Kolychev, and D. M. Okhochinskii, Thermal Emission Method of Protecting the Flying Apparatus Parts on Their Aerodynamic Heating, Patent No. 2404087 RF 2404087C1, Publ. 0.3.11.2009.

  8. V. A. Kernozhitskii, A. V. Kolychev, and A. V. Makarenko, Development of a method for calculating a multielement thermionic thermal protection of supersonic flying apparatuses, Electron. Zh. “Trudy MÉI”, Issue 75, 1–18 (2014).

  9. V. P. Zimin, K. N. Efimov, A. V. Kolychev, V. A. Kernozhitskii, V. A. Ovchinnikov, and A. S. Yakimov, Simulation of the active thermionic thermal protection during convective heating of a composite shell, Kosm. Tekh. Tekhnol., 24, No. 1, 23–34 (2019).

    Google Scholar 

  10. V. P. Zimin, K. N. Efimov, V. A. Ovchinnikov, and A. S. Yakimov, Mathematical modeling of active thermionic heat protection in a high enthalpy flow past a shell, J. Eng. Phys. Thermophys., 93, No. 3, 497–508 (2020).

    Article  Google Scholar 

  11. B. A. Ushakov, V. D. Nikitin, and I. Ya. Emel’yanov, Principles of Thermionic Energy Conversion, Atomizdat, Moscow (1974).

  12. V. V. Sinyavskii, Methods and Means of Experimental Investigations and Reactor Tests of Thermionic Power Generating Assemblies [in Russian], Énergoatomizdat, Moscow (2000).

  13. L. A. Kvasnikov, V. Z. Kaibyshev, and A. G. Kalandarishvili, Work Processes in Thermionic Converters of Nuclear Power Plants [in Russian], Mosk. Aviats. Inst., Moscow (2001).

  14. Yu. A. Broval’skii, N. M. Rozhkova, V. V. Sinyavskii, and V. D. Yuditskii, Generalized calculation of volt–ampere characteristics and temperature fields of thermionic converters on the basis of the data of tests of an isothermal thermoelectronic converter, in: Thermionic Energy Converters, VNIIT, Moscow (1969), pp. 281–294.

  15. A. A. Konoplev, V. D. Yuditskii, and L. I. Pushina, An empitical method for calculating the volt–ampere characteristics of the discharge mode of a thermoelectronic converter, Zh. Tekh. Fiz., 45, Issue 2, 314–321 (1975).

    Google Scholar 

  16. Yu. V. Babushkin and V. P. Zimin, Methods of calculating the volt–ampere characteristics of thermionic electrogenerating assemblies, Izv. Tomsk. Politekh. Univ., 309, No. 2, 135–139 (2006).

    Google Scholar 

  17. Yu. V. Babushkin, V. P. Zimin, and E. A. Khomyakov, Software and results of simulation of thermionic systems, Izv. Tomsk. Politekh. Univ., 309, No. 3, 53–57 (2006).

    Google Scholar 

  18. D. N. Sergeev and A. S. Titkov, Adsorbent Eletrodes, Énergoizdat, Moscow (1982).

    Google Scholar 

  19. V. E. Peletskii and V. Yu. Voskresenskii, Thermophysical properties of tantalum at temperatures above 1000oC, Teplifiz. Vys. Temp. [in Russian], No. 4, 336–342 (1966).

  20. V. Yu. Bodryakov, Heat capacity of solid tantalum: Self-consistent calculation, Teplofiz. Vys. Temp., No. 2, 233–242 (2013).

  21. A. M. Grishin and V. M. Fomin, Conjugate and Nonstationary Problems of the Mechanics of Reacting Media [in Russian], Nauka, SO AN SSSR, Novosibirsk (1984).

  22. V. V. Lunev, K. M. Magomedov, and V. G. Pavlov, Hypersonic Flow around Blunt Cones with Account for Equilibrium Physicochemical Conversions [in Russian], VTS AN SSSR, Moscow (1968).

  23. S. Patankar and D. Spalding, Heat and Mass Transfer in Boundary Layers [Russian translation], Énergiya, Moscow (1970).

    Google Scholar 

  24. T. Cebeci, Behavior of turbulent flow near a porous wall with pressure gradient, AIAA J., 8, No. 12, p. 48 (1970).

  25. K. K. Chen and N. A. Thyson, Extension of Emmons spot theory to flows on blunt bodies, AIAA J., 9, No. 5, p. 821 (1971).

  26. A. M. Grishin, V. I. Zinchenko, K. N. Efimov, A. N. Subbotin, and A. S. Yakimov, Iterative-Interpolational Method and Its Applications, Izd. Tomsk. Univ., Tomsk (2004).

    Google Scholar 

  27. G. F. Widhopf, Turbulent heat-transfer measurements on a blunt cone at angle of attack, AIAA J., 9, No. 8, p. 1574 (1971).

  28. G. F. Widhopf and R. Hall, Transitional and turbulent heat-transfer measurements on a yawed blunt conical nosetip, AIAA J., 10, No. 10, p. 1318 (1972).

  29. A. A. Samarskii, Introduction to the Theory of Difference Schemes [Russian translation], Nauka, Moscow (1971).

    Google Scholar 

  30. V. F. Zinov’ev, Thermophysical Properties of Metals at High Temperatures, Handbook [in Russian], Metallurgiya, Moscow (1989).

  31. V. S. Chirkin, Thermophysical Properties of Materials of Nuclear Technology, Handbook [in Russian], Atomizdat, Moscow (1968).

  32. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids FMGI, Moscow (1963).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Yakimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 2, pp. 335–349, March–April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, K.N., Ovchinnikov, V.A. & Yakimov, A.S. Numerical Simulation of Thermoelectronic Thermal Protection in the Case of High Enthalpy Flow Past a Multilayer Shell. J Eng Phys Thermophy 95, 327–342 (2022). https://doi.org/10.1007/s10891-022-02487-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02487-x

Keywords

Navigation