Skip to main content
Log in

Influence of the Method of Water Supply to the Zone of a Forest Fire on the Efficiency of its Extinguishing

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of experimental investigations on the efficiency of suppression of the flame combustion and thermal decomposition of forest combustible materials in a forest fire by the local throw-down of water masses to a zone of this fire, the spraying of a fine-dispersed water over the combustion zone, and the formation of a water screen along its perimeter are presented. Features of each of these methods are analyzed. Advantages of the combined method of extinguishing a forest fire, involving the space spraying of small water droplets intended to be distributed through the fire hotbed over a given period of time, are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Marlon, P. J. Bartlein, D. G. Gavin, C. J. Long, R. S. Anderson, C. E. Briles, K. J. Brown, D. Colombaroli, D. J. Hallett, M. J. Power, E. A. Scharf, and M. K. Walsh, Long-term perspective on wildfires in the western USA, Proc. Natl. Acad. Sci. USA, 109, 535–543 (2012).

    Google Scholar 

  2. O. Pechony and D. T. Shindell, Driving forces of global wildfires over the past millennium and the forthcoming century, Proc. Natl. Acad. Sci. USA, 107, 19167–19170 (2010).

    Google Scholar 

  3. A. L. Westerling, H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, Warming and earlier spring increase western US forest wildfire activity, Science, 313, 940–943 (2006).

    Google Scholar 

  4. H.-H. Wang, Analytical model for determining thermal radiance of fire plumes with implication to wildland fire, Combust. Sci. Technol., 181, No. 2, 245–263 (2009).

    Google Scholar 

  5. J. Wang and X. Zhang, Impacts of wildfires on interannual trends in land surface phenology: An investigation of the Hayman, Fire Environ. Res. Lett., 12, Article No. 054008 (2017).

    Google Scholar 

  6. D. S. Ward, E. Shevliakova, S. Malyshev, J.-F. Lamarque, and A. T. Wittenberg, Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models, Environ. Res. Lett., 11, Article No. 125008 (2016).

    Google Scholar 

  7. D. Frankman, B. W. Webb, and B. W. Butler, Influence of absorption by environmental water vapor on radiation transfer in wildland fires, Combust. Sci. Technol., 180, No. 3, 509–518 (2008).

    Google Scholar 

  8. O. V. Matvienko, A. I. Fil’kov, and A. M. Grishin, Computational investigation of the transport of burning particles, J. Eng. Phys. Thermophys., 89, No. 5, 1315–1324 (2016).

    Google Scholar 

  9. R. F. Miller, J. C. Chambers, D. A. Pyke, F. B. Pierson, and C. J. Williams, A review of fire effects on vegetation and soils in the Great Basin region: Response and ecological site characteristics, USDA Forest Service –– General Tech. Report RMRS-GTR, Vol. 308 (2013).

  10. J. P. Roccaforte, D. W. Huffman, P. Z. Fulé, W. W. Covington, W. W. Chancellor, M. T. Stoddard, and J. E. Crouse, Forest structure and fuels dynamics following ponderosa pine restoration treatments, White Mountains, Arizona, Forest Ecol. Manage., 337, 174–185 (2015).

    Google Scholar 

  11. J. Abraham, K. Dowling, and S. Florentine, The unquantified risk of post-fire metal concentration in soil: A review, Water, Air, Soil Pollut., 228, No. 5, Article No. 175 (2017).

  12. A. G. Mayor, A. Valdecantos, V. R. Vallejo, J. J. Keizer, J. Bloem, J. Baeza, O. González-Pelayo, A. I. Machado, and P. C. de Ruiter, Fire-induced pine woodland to shrubland transitions in Southern Europe may promote shifts in soil fertility, Sci. Total Environ., 573, 1232–1241 (2016).

    Google Scholar 

  13. G. Adamonyté, J. Motiejūnaité, and R. Irśénaité, Crown fi re and surface fire: Effects on myxomycetes inhabiting pine plantations, Sci. Total Environ., 572, 1431–1439 (2016).

    Google Scholar 

  14. M. L. Wine and D. Cadol, Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: Fact or fiction?, Environ. Res. Lett., 11, Article No. 085006 (2016).

    Google Scholar 

  15. M. E. Chambers, P. J. Fornwalt, S. L. Malone, and M. A. Battaglia, Patterns of conifer regeneration following high severity wildfire in ponderosa pine-dominated forests of the Colorado Front Range, Forest Ecol. Manage., 378, 57–67 (2016).

    Google Scholar 

  16. B. Di Mauro, F. Fava, L. Busetto, G. F. Crosta, and R. Colombo, Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data, Int. J. Appl. Earth Obs. Geoinform., 32, 163–172 (2014).

    Google Scholar 

  17. P. J. Fornwalt and M. R. Kaufmann, Understorey plant community dynamics following a large, mixed severity wildfire in a Pinus ponderosa-Pseudotsuga menziesii forest, J. Veget. Sci., 25, 805–818 (2014).

    Google Scholar 

  18. M. Francos, X. Úbeda, J. Tort, J. M. Panareda, and A. Cerdа, The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula, Global Planetary Change, 145, 11–16 (2016).

    Google Scholar 

  19. S. F. Murphy, J. H. Writer, R. B. McCleskey, and D. A. Martin, The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire, Environ. Res. Lett., 10, Article No. 084007 (2015).

    Google Scholar 

  20. F.-N. Robinne, C. Miller, M.-A. Parisien, M. B. Emelko, K. D. Bladon, U. Silins, and M. Flannigan, A global index for mapping the exposure of water resources to wildfire, Forests, 7, 1–16 (2016).

    Google Scholar 

  21. V. S. Rukavishnikov, N. V. Efimova, and T. A. Elfimova, The study of health risk in short-term inhalation exposure in conditions of forest fires, Gigiena Sanitaria, 1, 50–52 (2013).

    Google Scholar 

  22. On the State of Protection of the Population and territories of the Russian Federation from Natural and Man-Made Emergencies in 2016, State Report, FGBU VNII GOChS (FC), Moscow (2017).

  23. D. Morvan, Wind effects, unsteady behaviors, and regimes of propagation of surface fires in open field, Combust. Sci. Technol., 186, No. 7, 869–888 (2014).

    Google Scholar 

  24. D. P. Kasymov, Experimental investigation of the deepening of the combustion front into peat layers different in botanical composition, J. Eng. Phys. Thermophys., 90, No. 1, 227–232 (2017).

    Google Scholar 

  25. J. C. S. André, J. M. Urbano, and D. X. Viegas, Forest fire spread models: The local quasi-equilibrium approach, Combust. Sci. Technol., 178, No. 12, 2115–2143 (2006).

    Google Scholar 

  26. J.-H. Balbi, J.-L. Rossi, T. Marcelli, and P.-A. Santoni, A 3D physical real-time model of surface fires across fuel beds, Combust. Sci. Technol., 179, No. 12, 2511–2537 (2007).

    Google Scholar 

  27. A. A. G. Wilson, Width of firebreak that is necessary to stop grass fires: Some field experiments, Can. J. Forest Res., 18, 682–687 (1988).

    Google Scholar 

  28. D. Morvan, Numerical study of the behaviour of a surface fire propagating through a firebreak built in a Mediterranean shrub layer, Fire Safety J., 71, 34–48 (2015).

    Google Scholar 

  29. L. Merino, F. Caballero, J. R. Martínez-De-Dios, I. Maza, and A. Ollero, An unmanned aircraft system for automatic forest fire monitoring and measurement, J. Intell. Robot. Syst.: Theory Appl., 65, 533–548 (2012).

    Google Scholar 

  30. A. Yu. Pidzhakov, F. N. Reshechkiy, O. V. Gavrilova, Use of aircraft of the Ministry of Emergency Situations of Russia in the extinguishing of forest fires, Vestn. St. Petersburg. Univ. Gos. Protivop. Sluzhby MChS Rossii, No.1, 68–71 (2011).

    Google Scholar 

  31. G. J. Cary, I. D. Davies, R. A. Bradstock, R. E. Keane, and M. D. Flannigan, Importance of fuel treatment for limiting moderate-to-high intensity fire: Findings from comparative fire modeling, Landscape Ecol., 32, 1473–1483 (2017).

    Google Scholar 

  32. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, The influence of initial sizes and velocities of water droplets on transfer characteristics at high-temperature gas flow, Int. J. Heat Mass Transf., 79, 838–845 (2014).

    Google Scholar 

  33. R. S. Volkov, N. P. Kopylov, G. V. Kuznetsov, P. A. Strizhak, and I. R. Khasanov, High-speed video recording of the break-down of water projectiles in their free fall in an air medium, Pozhar. Bezopasnost', No. 4, 109–115 (2015).

    Google Scholar 

  34. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of atomized water droplet initial parameters influence on evaporation intensity in flaming combustion zone, Fire Safety J., 70, 61–70 (2014).

    Google Scholar 

  35. P. A. Strizhak, Influence of droplet distribution in a "water slug" on the temperature and concentration of combustion products in its wake, J. Eng. Phys. Thermophys., 86, No. 4, 895–904 (2013).

    Google Scholar 

  36. G. V. Kuznetsov and P. A. Strizhak Heat and mass transfer in quenching the reaction of thermal decomposition of a forest combustible material with a group of water drops, J. Eng. Phys. Thermophys., 87, No. 3, 608–617 (2014).

    Google Scholar 

  37. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Evaporation of water droplets in a high-temperature gaseous medium, J. Eng. Phys. Thermophys., 89, No. 1, 141–151 (2016).

    Google Scholar 

  38. J. Rakowska, R. Szczygieł, M. Kwiatkowski, B. Porycka, K. Radwan, and K. Prochaska, Application tests of new wetting compositions for wildland firefighting, Fire Technol., 53, 1379–1398 (2017).

    Google Scholar 

  39. J.-M. Buchlin, Thermal shielding by water spray curtain, J. Loss Prevent. Process Ind., 18, 423–432 (2005).

    Google Scholar 

  40. W. Plumecocq, L. Audouin, J. P. Joret, and H. Pretrel, Numerical method for determining water droplets size distributions of spray nozzles using a two-zone model, Nucl. Eng. Des., 324, 67–77 (2017).

    Google Scholar 

  41. G. Parent, R. Morlon, Z. Acem, P. Fromy, E. Blanchard, and P. Boulet, Radiative shielding effect due to different water sprays used in a real scale application, Int. J. Therm. Sci., 105, 174–181 (2016).

    Google Scholar 

  42. N. Ren, H. R. Baum, and A. W. Marshall, A comprehensive methodology for characterizing sprinkler sprays, Proc. Combust. Inst., 33, 2547–2554 (2011).

    Google Scholar 

  43. S. J. Jordan, N. L. Ryder, J. Repcik, and A. W. Marshall, Spatially-resolved spray measurements and their implications, Fire Safety J., 91, 723–729 (2017).

    Google Scholar 

  44. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental study of the suppression of flaming combustion and thermal decomposition of model ground and crown forest fires, Combust., Explos., Shock Waves, 53, 678–688 (2017).

    Google Scholar 

  45. I. S. Voytkov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and V. E. Nakoryakov, Physicochemical processes in the interaction of an aerosol with the combustion front of forest fuel materials, J. Appl. Mech. Tech. Phys., 59, 891–902 (2018).

    Google Scholar 

  46. P. A. Strizhak, R. S. Volkov, M. V. Zabelin, and M. V. Piskunov, Disintegration of large balls of water-based liquids in free fall through high-temperature gases, Atomiz. Sprays, 27, 893–911 (2017).

    Google Scholar 

  47. A. V. Bilsky, Yu. A. Lozhkin, and D. M. Markovich, Interferometric technique for measurement of droplet diameter, Thermophys. Aeromech., 18, 1–12 (2011).

    Google Scholar 

  48. Y. K. Akhmetbekov, S. V. Alekseenko, V. M. Dulin, D. M. Markovich, and K. S. Pervunin, Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet, Exp. Fluids, 48, 615–629 (2010).

    Google Scholar 

  49. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of mixtures and foreign inclusions in water droplets influence on integral characteristics of their evaporation during motion through high-temperature gas area, Int. J. Therm. Sci., 88, 193–200 (2015).

    Google Scholar 

  50. R. S. Volkov, G. V. Kuznetsov, P. A. Kuybin, and P. A. Strizhak, Weber numbers for the stages of transformation of water projectiles in their free fall in an air, Pis’ma Zh. Tekh. Fiz., 41, No. 20, 103–110.

  51. E. D. Link, S. J. Jordan, T. M. Myers, P. B. Sunderland, and A. W. Marshall, Spray dispersion measurements of a sprinkler array, Proc. Combust. Inst., 36, 3305–3311 (2017).

    Google Scholar 

  52. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Movement of water drops in a forest fuel layer in the course of its thermal decomposition, Therm. Sci., 22, Issue 1, 301–312 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Strizhak.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1513–1522, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.V., Zhdanova, A.O., Strizhak, P.A. et al. Influence of the Method of Water Supply to the Zone of a Forest Fire on the Efficiency of its Extinguishing. J Eng Phys Thermophy 93, 1460–1469 (2020). https://doi.org/10.1007/s10891-020-02251-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02251-z

Keywords

Navigation