Skip to main content
Log in

Mathematical Simulation of the Heat and Mass Transfer in the Movement of Liquid Droplets in a Gas Medium Under the Conditions of their Intense Phase Transformations

  • HEAT TRANSFER IN PHASE TRANSFORMATIONS
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A physical and mathematical model of the movement of a liquid droplet in a high-temperature air flow has been formulated with regard for the main factors of this movement: the inertia of the droplet, its viscous friction, the surface tension of the liquid in it, the air drag, the gravity, lift, and Magnus forces acting on the droplet, its turbophoresis and thermophoresis, the convective heat flows inside the droplet, the turbulence and compressibility of the carrying medium, the concentration of the dispersed phase in it, the nonstationarity of the movement of the droplet, its phase transformations, the collisions of the droplet with the neighboring liquid droplets in the gas flow, the partial fragmentation of the droplet, and its breakdown. Numerical and experimental investigations of the influence of the indicated factors on the velocity of movement, the heating, and the intensity of evaporation of a liquid droplet in a high-temperature gas medium have been performed. The results of these investigations were generalized for determining the possible applications of the model developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kunkel, T. Teumer, P. Dornhofer, K. Schlachter, Y. Weldeslasie, M. Kuhr, M. Radle, and J. U. Repke, Determination of heat transfer coefficients in direct contact latent heat storage systems, Appl. Therm. Eng., 145, 71–79 (2018).

    Google Scholar 

  2. Z. Zezhi, S. Abolfazl, and Ju. Y. Sungtaek, Thermohydraulic characteristics of a multi-string direct-contact heat exchanger, Int. J. Heat Mass Transf., 126, Part A, 536–544 (2018).

  3. D. Stefanitsis, I. Malgarinos, G. Strotos, N. Nikolopoulos, E. Kakaras, and M. Gavaises, Numerical investigation of the aerodynamic breakup of Diesel and heavy fuel oil droplets, Int. J. Heat Fluid Flow, 68, 203–215 (2017).

    Google Scholar 

  4. T. W. Zhang, H. Liu, Z. Y. Han, Z. M. Du, and Y. Wang, Active substances study in fi re extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics, Appl. Therm. Eng., 122, 429–438 (2017).

    Google Scholar 

  5. P. R. Von Rohr, K. Prikopsky, and T. Rothenfluh, Flames in supercritical water and their applications, Strojnicky Casopis, 59, 91–103 (2008).

    Google Scholar 

  6. W. Y. Saman and S. Alizadeh, Modeling and performance analysis of a cross-flow type plate heat exchanger for dehumidification/cooling, Sol. Energy, 70, 361–372 (2001).

    Google Scholar 

  7. C. Planchette, E. Lorenceau, and G. Brenn, The onset of fragmentation in binary liquid drop collisions, J. Fluid Mech., 702, 5–25 (2012).

    MATH  Google Scholar 

  8. M. Sommerfeld and M. Kuschel, Modeling droplet collision outcomes for different substances and viscosities, Exp. Fluids, 57, Article 187 (2016).

    Google Scholar 

  9. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Influence of the initial parameters of spray water on its motion through a counter flow of high-temperature gases, Tech. Phys., 59, 959–967 (2014).

    Google Scholar 

  10. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Influence of droplet concentration on evaporation in a high-temperature gas, Int. J. Heat Mass Transf., 96, 20–28 (2016).

    Google Scholar 

  11. G. V. Kuznetsov and P. A. Strizhak, Effect of the volume concentration of a set of water droplets moving through high-temperature gases on the temperature in the wake, J. Appl. Mech. Tech. Phys., 56, 558–568 (2015).

    Google Scholar 

  12. P. A. Strizhak and R. S. Volkov, The integral characteristics of the deceleration and entrainment of water droplets by the counter flow of high-temperature combustion products, Exp. Therm. Fluid Sci., 75, 54–65 (2016).

    Google Scholar 

  13. S. K. Pawar, F. Henrikson, G. Finotello, J. T. Padding, N. G. Deen, A. Jongsma, F. Innings, and J. A. M. H. Kuipers, An experimental study of droplet–particle collisions, Powder Technol., 300, 157–163 (2016).

    Google Scholar 

  14. R. Süverkrüp, S. Eggerstedt, S. Wanning, M. Kuschel, M. Sommerfeld, and A. Lamprecht, Collisions and coalescence in droplet streams for the production of freeze-dried powders, Colloids Surf. B, 141, 443–449 (2016).

    Google Scholar 

  15. R. S. Volkov and P. A. Strizhak, Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature, Appl. Therm. Eng., 127, 141–156 (2017).

    Google Scholar 

  16. S. S. Sazhin, A. E. Elwardany, P. A. Krutitskii, V. Depredurand, G. Castanet, F. Lemoine, E. M. Sazhina, and M. R. Heikal, Multicomponent droplet heating and evaporation: numerical simulation versus experimental data, Int. J. Therm. Sci., 50, 1164–1180 (2011).

    Google Scholar 

  17. G. V. Kuznetsov, P. A. Strizhak, R. S. Volkov, and O. V. Vysokomornaya, Integral characteristics of water droplet evaporation in high-temperature combustion products of typical flammable liquids using SP and IPI methods, Int. J. Therm. Sci., 108, 218–234 (2016).

    Google Scholar 

  18. P. A. Strizhak, Influence of droplet distribution in a "water slug" on the temperature and concentration of combustion products in its wake, J. Eng. Phys. Thermophys., 86, No. 4, 895–904 (2013).

    Google Scholar 

  19. J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys., 71, Article ID 036601 (2008).

  20. S. S. Sazhin, Modeling of fuel droplet heating and evaporation: Recent results and unsolved problems, Fuel, 196, 69–101 (2017).

    Google Scholar 

  21. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Predictive determination of the integral characteristics of evaporation of water droplets in gas media with a varying temperature, J. Eng. Phys. Thermophys., 90, No. 3, 615–624 (2017).

    Google Scholar 

  22. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas–Droplet Flows [in Russian], Izd. Nats. Gos. Tekh. Univ., Novosibirsk (2009).

    Google Scholar 

  23. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Evaporation and Transformation of Droplets and Large Liquid Masses in Their Movement through High-Temperature Gases [in Russian], Izd. Sib. Otd. RAN, Novosibirsk (2016).

    Google Scholar 

  24. G. Charalampous and Y. Hardalupas, Collisions of droplets on spherical particles, Phys. Fluids, 29, Article No. 103305 (2017).

  25. J. Breitenbach, J. Kissing, I. V. Roisman, and C. Tropea, Characterization of secondary droplets during thermal atomization regime, Exp. Therm. Fluid Sci., 98, 516–522 (2018).

    Google Scholar 

  26. A. L. Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech., 38, 159–192 (2006).

    MathSciNet  MATH  Google Scholar 

  27. A. Soni, V. Sanjay, and A. K. Das, Formation of fl uid structures due to jet–jet and jet–sheet interactions, Chem. Eng. Sci., 191, 67–77 (2018).

    Google Scholar 

  28. O. O. Taskiran and M. Ergeneman, Trajectory based droplet collision model for spray modeling, Fuel, 115, 896–900 (2014).

    Google Scholar 

  29. C. Hu, S. Xia, C. Li, and G. Wu, Three-dimensional numerical investigation and modeling of binary alumina droplet collisions, Int. J. Heat Mass Transf., 113, 569–588 (2017).

    Google Scholar 

  30. G. Finotello, R. F. Kooiman, J. T. Padding, K. A. Buist, A. Jongsma, F. Innings, and J. A. M. Kuipers, The dynamics of milk droplet–droplet collisions, Exp. Fluids, 59, Article No. 17 (2018).

  31. W. E. Ranz and W. R. Marshall, Evaporation from drops — I, II. Chem. Eng. Prog., 48, 141–146, 173–180 (1952).

    Google Scholar 

  32. V. I. Terekhov, V. V. Terekhov, N. E. Shishkin, and K. C. Bi, Experimental and numerical investigations of nonstationary evaporation of liquid droplets, J. Eng. Phys. Thermophys., 83, No. 5, 883–890 (2010).

    Google Scholar 

  33. G. Badin and F. Crisciani, Variational formulation of fluid and geophysical fluid dynamics, in: Mech. Symmetries Conservation Laws, Springer Int. Publ. AG (2018).

  34. Kh. A. Rakhmatullin, Bases of the gas dynamics and interpenetrating movements of compressible media, Appl. Math. Mech., 20, No. 2, 184–195 (1956).

    Google Scholar 

  35. M. Sommerfeld, Modeling and numerical calculation of turbulent gas–solid flows with the Euler/Lagrange approach, Powder Part., No. 16, 194–206 (1998).

    Google Scholar 

  36. M. Sommerfeld, Particle motion in fl uids, in: VDI-Buch: VDI Heat Atlas, Springer Verlag, Berlin, Heidelberg (2010), pp. 1181–1196.

    Google Scholar 

  37. M. A. Pakhomov and V. I. Terekhov, Effect of flow swirling on heat transfer in gas–droplet flow downstream of abrupt pipe expansion, High Temp., 56, 410–417 (2018).

    Google Scholar 

  38. C. T. Crowe, M. Sommerfeld, and Y. Tsuji, Fundamentals of GasParticle and GasDroplet Flows, CRC Press, Boca Raton, USA (1998).

    Google Scholar 

  39. M. Sommerfeld, B. van Wachem, and R. Oliemans, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows, ERCOFTAC, Brussels (2008).

    Google Scholar 

  40. R. I. Nigmatullin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  41. É. P. Volkov, L. I. Zaichik, and V. A. Pershukov, Simulation of Combustion of a Solid Fuel [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  42. M. Sommerfeld, Analysis of collision effects for turbulent gas–particle flow in a horizontal channel: Part I. Particle transport, Int. J. Multiphase Flow, 29, 675–699 (2003).

    MATH  Google Scholar 

  43. A. Nastic and B. Jodoin, Evaluation of heat transfer transport coefficient for cold spray through computational fluid dynamics and particle in-flight temperature measurement using a high-speed IR camera, J. Therm. Spray Technol., 27, 1491–1517 (2018).

    Google Scholar 

  44. S. L. Soo, Fluid Dynamics of Multiphase Systems [Russian translation], Nauka, Moscow (1971).

    Google Scholar 

  45. M. I. Shilyaev and A. M. Shilyaev, Aerodynamics and Heat and Mass Exchange of Gas-Disperse Flows [in Russian], Forum: Infra-M, Moscow (2015).

    Google Scholar 

  46. S. Prakash and W. A. Sirignano, Liquid fuel droplet heating with internal circulation, Int. J. Heat Mass Transf., 21, 885–895 (1978).

    Google Scholar 

  47. G. B. Wallis, The terminal speed of drops and bubbles in an infinite medium, Int. J. Multiphase Flow, 1, 491–520 (1974).

    Google Scholar 

  48. A. A. Shraiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko, Turbulent Flows of Gas Suspensions [in Russian], Naukova Dumka, Kiev (1987).

  49. M. R. Maxey and J. J. Riley, Equation of motion small rigid sphere in a nonuniform flow, Phys. Fluids, 26, Article No. 883 (1983).

  50. P. Pakseresht and S. V. Apte, Volumetric displacement effects in Euler–Lagrange LES of particle-laden jet flows, Int. J. Multiphase Flow, 113, 16–32 (2019).

    MathSciNet  Google Scholar 

  51. P. Eisenklam, S. A. Arunachalam, and J. A. Weston, Evaporation rates and drag resistance of burning drops, Symp. Combust., 11, 715–728 (1967).

    Google Scholar 

  52. R. N. Dahms and J. C. Oefelein, The significance of drop non-sphericity in sprays, Int. J. Multiphase Flow, 86, 67–85 (2016).

    MathSciNet  Google Scholar 

  53. R. S. Volkov, G. V. Kuznetsov, P. A. Kuybin, and P. A. Strizhak, The ranges of the aerodynamic drag coefficient of water droplets moving through typical gas media, J. Eng. Thermophys., 25, No. 1, 1–13 (2016).

    Google Scholar 

  54. P. G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, No. 2, 385−400 (1965).

    MATH  Google Scholar 

  55. R. Mei, An approximate expression for the shear lift force on a spherical particle at finite Reynolds number, Int. J. Multiphase Flow, 18, 145–147 (1992).

    MATH  Google Scholar 

  56. M. A. Pakhomov and V. I. Terekhov, Solid particle spreading in gas-dispersed confined swirling fl ow. Eulerian and Lagrangian approaches, Thermophys. Aeromech., 24, 325–338 (2017).

    Google Scholar 

  57. V. P. Yatsenko, Determination of the force acting on a spherical solid particle in a flow with a shift, Fiz. Aerodisp. Syst., 39, 240–248 (2002).

    Google Scholar 

  58. S. I. Rubinow and J. B. Keller, The transverse force on spinning sphere moving in a viscous fluid, J. Fluid Mech., 11, 447–459 (1961).

    MathSciNet  MATH  Google Scholar 

  59. E. Keinan, A. C. Abraham, A. Cohen, A. I. Alexandrov, R. Mintz, M. Cohen, D. Reichmann, D. Kaganovich, and Y. Nahmias, High-Reynolds microfluidic sorting of large yeast populations, Sci. Rep., 8, Article No. 13739 (2018).

  60. B. Oesterlé and T. Bui Dinh, Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluids, 25, 16–22 (1998).

    Google Scholar 

  61. V. P. Yatsenko and V. V. Alexandrov, Measuring of the Magnus force at moderate Reynolds numbers, Int. J. Fluid Mech. Res., 31, 515–521 (2004).

    Google Scholar 

  62. V. G. Chernyak and T. V. Sograbi, The role of molecule–surface interaction in thermophoresis of an aerosol particle, J. Aerosol Sci., 128, 62–71 (2019).

    Google Scholar 

  63. J. C. Padrino, J. E. Sprittles, D. A. Lockerby, Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations, J. Fluid Mech., 862, 312–347 (2019).

    MathSciNet  MATH  Google Scholar 

  64. Z. R. Gorbis, Heat Exchange and Hydrodynamics of Disperse through Flows [in Russian], Énergiya, Moscow (1970).

    Google Scholar 

  65. G. V. Kuznetsov and P. A. Strizhak, Influence of the shape of a water droplet on the results of mathematical simulation of its evaporation in the movement through high-temperature combustion products, Tepl. Protsessy Tekh., No. 6, 254–261 (2013).

    Google Scholar 

  66. J. E. Sprittles and Y. D. Shikhmurzaev, Coalescence of liquid drops: Different models versus experiment, Phys. Fluids, 24, Article No. 122105 (2012).

  67. S. Kim, D. J. Lee, and C. S. Lee, Modeling of binary droplet collisions for application to inter-impingement sprays, Int. J. Multiphase Flow, 35, 533–549 (2009).

    Google Scholar 

  68. A. K. Flock, D. R. Guildenbecher, J. Chen, P. E. Sojka, and H. J. Bauer, Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops, Int. J. Multiphase Flow, 47, 37–49 (2012).

    Google Scholar 

  69. R. S. Volkov, G. V. Kuznetsov, P. A. Kuibin, and P. A. Strizhak, Weber numbers at various stages of water projectile transformation during free fall in air, Tech. Phys. Lett., 41, 1019–1022 (2015).

    Google Scholar 

  70. R. S. Volkov, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Experimental determination of times, amplitudes, and lengths of cycles of water droplet deformation in air, Tech. Phys. Lett., 41, 128–131 (2015).

    Google Scholar 

  71. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Transformation of solution and suspension masses during their free fall in air, Theor. Found. Chem. Eng., 51, 1055–1062 (2017).

    Google Scholar 

  72. K. Sun K, P. Zhang, M. Jia, and T. Wang, Collision-induced jet-like mixing for droplets of unequal-sizes, Int. J. Heat Mass Transf., 120, 218–227 (2018).

    Google Scholar 

  73. R. Bardia, Z. Liang, P. Keblinski, and M. F. Trujillo, Continuum and molecular-dynamics simulation of nanodroplet collisions, Phys. Rev. E, 93, Article No. 053104 (2016).

  74. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Evaporation of Water Droplets in a High-Temperature Gaseous Medium, J. Eng. Phys. Thermophys., 89, No. 1, 141–151 (2016).

    Google Scholar 

  75. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Water droplet deformation in gas stream: Impact of temperature difference between liquid and gas, Int. J. Heat Mass Transf., 85, 1–11 (2015).

    Google Scholar 

  76. D. V. Antonov, O. V. Vysokomornaya, G. V. Kuznetsov, and M. V. Piskunov, Modeling the water droplet evaporation processes with regard to convection, conduction and thermal radiation, J. Eng. Thermophys., 27, 145–154 (2018).

    Google Scholar 

  77. R. S. Volkov and P. A. Strizhak, Research on temperature fields and convection velocities in evaporating water droplets using planar laser-induced fluorescence and particle image velocimetry, Exp. Therm. Fluid Sci., 97, 392–407 (2018).

    Google Scholar 

  78. E. M. Bochkareva, M. K. Lei, V. V. Terekhov, and V. I. Terekhov, Methodological characteristics of an experimental investigation of the process of evaporation of suspended liquid droplets, J. Eng. Phys. Thermophys., 92, No. 5, 2208–2217 (2019).

    Google Scholar 

  79. G. V. Kuznetsov and P. A. Strizhak, Numerical investigation of the influence of convection in a mixture of combustion products on the integral characteristics of the evaporation of a finely atomized water drop, J. Eng. Phys. Thermophys., 87, No. 1, 103–111 (2014).

    Google Scholar 

  80. D. V. Antonov, G. V. Kuznetsov, and P. A. Strizhak, Determination of temperature and concentration of a vapor–gas mixture in a wake of water droplets moving through combustion products, J. Eng. Thermophys., 25, Issue 3, 337–351 (2016).

    Google Scholar 

  81. G. V. Kuznetsov and P. A. Strizhak, Heat and mass transfer at ignition of liquid fuel droplets spreading over the surface of massive hot bodies, J. Eng. Thermophys., 19, Issue 2, 75–84 (2010).

    Google Scholar 

  82. P. A. Strizhak, Characteristics of heat and mass transfer at ignition of a thin fi lm of condensed liquid substance by hot particles of different configuration, J. Eng. Thermophys., 20, Issue 4, 459–467 (2011).

    Google Scholar 

  83. G. V. Kuznetsov and P. A. Strizhak, 3D problem of heat and mass transfer at the ignition of a combustible liquid by a heated metal particle, J. Eng. Thermophys., 18, No. 1, 72–79 (2009).

    Google Scholar 

  84. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of the influence of mixtures and foreign inclusions in water droplets on integral characteristics of their evaporation during motion through high-temperature gas area, Int. J. Therm. Sci., 88, 193–200 (2015).

    Google Scholar 

  85. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental estimation of the influence of the droplet evaporation process on the conditions of movement in an incoming high-temperature gas flow, High Temp., 54, 555–559 (2016).

    Google Scholar 

  86. D. Antonov, J. Bellettre, D. Tarlet, P. Massoli, O. Vysokomornaya, and M. Piskunov, Impact of holder materials on the heating and explosive breakup of two-component droplets, Energies, 11, Article No. 3307 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Antonov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 5, pp. 1093–1114, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, D.V., Kuznetsov, G.V. & Strizhak, P.A. Mathematical Simulation of the Heat and Mass Transfer in the Movement of Liquid Droplets in a Gas Medium Under the Conditions of their Intense Phase Transformations. J Eng Phys Thermophy 93, 1055–1076 (2020). https://doi.org/10.1007/s10891-020-02207-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02207-3

Keywords

Navigation