Skip to main content
Log in

Genetic Underpinnings of Cuticular Hydrocarbon Biosynthesis in the German Cockroach, Blattella germanica (L.): Progress and Perspectives

  • Review
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Acknowledgements

We would like to give special thanks to Zhan-Feng Zhang from Northwest A&F University for his help with chemical analysis using GC-MS.

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 32200384) and China Postdoctoral Science Foundation (2022M710053).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and writing. Material preparation, data collection and analysis were performed by X-J Pei. The first draft of the manuscript was written by X-J Pei and Y-L Fan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong-Liang Fan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, XJ., Schal, C. & Fan, YL. Genetic Underpinnings of Cuticular Hydrocarbon Biosynthesis in the German Cockroach, Blattella germanica (L.): Progress and Perspectives. J Chem Ecol 50, 955–968 (2024). https://doi.org/10.1007/s10886-024-01509-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-024-01509-7

Keywords

Profiles

  1. Xiao-Jin Pei
  2. Coby Schal