Abstract
Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.





Similar content being viewed by others

Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams T, Dillwith J, Blomquist G (1984) The role of 20-hydroxyecdysone in housefly sex pheromone biosynthesis. J Insect Physiol 30:287–294. https://doi.org/10.1016/0022-1910(84)90129-X
Alabaster A, Isoe J, Zhou G, Lee A, Murphy A, Day WA et al (2011) Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti. Insect Biochem Mol Biol 41:946–955. https://doi.org/10.1016/j.ibmb.2011.09.004
Augustynowicz M, Maliński E, Warnke Z, Szafranek J, Nawrot J (1987) Cuticular hydrocarbons of the German cockroach, Blattella germanica L. Comp Biochem Physiol B Comp Biochem 86:519–523. https://doi.org/10.1016/0305-0491(87)90441-X
Bai TT, Pei XJ, Liu TX, Fan YL, Zhang SZ (2022) Melanin synthesis genes BgTH and BgDdc affect body color and cuticle permeability in Blattella germanica. Insect Sci 29:1552–1568. https://doi.org/10.1111/1744-7917.13024
Baki AA, Jung JK, Kim Y (2020) Alteration of insulin signaling to control insect pest by using transformed bacteria expressing dsRNA. Pest Manag Sci 76:1020–1030. https://doi.org/10.1002/ps.5612
Barber MC, Price NT, Travers MT (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta 1733:1–28. https://doi.org/10.1016/j.bbalip.2004.12.001
Baron A, Denis B, Wicker-Thomas C (2018) Control of pheromone production by ovaries in Drosophila. J Insect Physiol 109:138–143. https://doi.org/10.1016/j.jinsphys.2018.07.003
Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci USA 11045:18321–18326. https://doi.org/10.1073/pnas.1318119110
Blomquist GJ, Bagnères AG (2010) Insect hydrocarbons: structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: Biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 19–34
Blomquist GJ, Ginzel MD (2021) Chemical Ecology, Biochemistry, and Molecular Biology of Insect hydrocarbons. Annu Rev Entomol 66:45–60. https://doi.org/10.1146/annurev-ento-031620-071754
Blomquist GJ, Jackson LL (1973) Incorporation of labelled dietary n alkanes into cuticular lipids of the grasshopper Melanoplus sanguinipes. J Insect Physiol 19:1639–1647. https://doi.org/10.1016/0022-1910(73)90094-2
Blomquist GJ, Guo L, Gu P, Blomquist C, Reitz RC, Reed JR (1994) Methyl-branched fatty acids and their biosynthesis in the housefly, Musca domestica L. Diptera: Muscidae. Insect Biochem Mol Biol 24:803–810. https://doi.org/10.1016/0965-1748(94)90108-2
Blomquist GJ, Tillman JA, Reed JR, Gu P, Vanderwel D, Choi S et al (1995) Regulation of enzymatic activity involved in sex pheromone production in the housefly, Musca domestica. Insect Biochem Mol Biol 25:751–757. https://doi.org/10.1016/0965-1748(95)00015-n
Blomquist GJ, Jurenka R, Schal C, Tittiger C (2011) Pheromone production: Biochemistry and molecular biology. In: Gilbert LI (ed) Insect endocrinology. Academic, San Diego, pp 523–567
Butterworth NJ, Wallman JF, Drijfhout FP, Johnston NP, Keller PA, Byrne PG (2020) The evolution of sexually dimorphic cuticular hydrocarbons in blowflies (Diptera: Calliphoridae). J Insect Physiol 33:1468–1486. https://doi.org/10.1111/jeb.13685
Carot-Sans G, Muñoz L, Piulachs MD, Guerrero A, Rosell G (2015) Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis. Insect Mol Biol 24:82–92. https://doi.org/10.1111/imb.12138
Chase J, Jurenka RA, Schal C, Halarnkar PP, Blomquist GJ (1990) Biosynthesis of methyl branched hydrocarbons of the German cockroach Blattella germanica (L.) (Orthoptera, Blattellidae). Insect Biochem 20:149–156. https://doi.org/10.1016/0020-1790(90)90007-H
Chase J, Touhara K, Prestwich GD, Schal C, Blomquist GJ (1992) Biosynthesis and endocrine control of the production of the German cockroach sex pheromone 3,11-dimethylnonacosan-2-one. Proc Natl Acad Sci USA 89:6050–6054. https://doi.org/10.1073/pnas.89.13.6050
Chen N, Pei XJ, Li S, Fan YL, Liu TX (2020) Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L). Pest Manag Sci 76:215–226. https://doi.org/10.1002/ps.5499
Chen N, Liu YJ, Fan YL, Pei XJ, Yang Y, Liao MT et al (2022) A single gene integrates sex and hormone regulators into sexual attractiveness. Nat Ecol Evol 6:1180–1190. https://doi.org/10.1038/s41559-022-01808-w
Chertemps T, Duportets L, Labeur C, Ueda R, Takahashi K, Saigo K, Wicker-Thomas C (2007) A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 10411:4273–4278. https://doi.org/10.1073/pnas.0608142104
Chibnall AC, Piper SH, Pollard A, Willimas EF, Sahai PN (1934) The constitution of the primary alcohols, fatty acids and paraffins present in plant and insect waxes. Biochem J 28:2189–2208. https://doi.org/10.1042/bj0282189
Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:822–830. https://doi.org/10.1002/bies.201500014
Ciudad L, Bellés X, Piulachs MD (2007) Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol 8:53. https://doi.org/10.1186/1471-2199-8-53
Cvačka J, Jiroš P, Šobotník J, Hanus R, Svatoš A (2006) Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J Chem Ecol 322:409–434. https://doi.org/10.1007/s10886-005-9008-5
Diehl PA (1973) Paraffin synthesis in the oenocytes of the desert Locust. Nature 243:468–470
Diehl PA (1975) Synthesis and release of hydrocarbons by the oenocytes of the desert Locust, Schistocerca Gregaria. J Insect Physiol 21:1237–1246. https://doi.org/10.1016/0022-1910(75)90093-1
Dusham EH (1918) The wax glands of the cockroach (Blatta Germanica). J Morphol 31:563–581. https://doi.org/10.1002/jmor.1050310305
Eliyahu D, Nojima S, Capracotta SS, Comins DL, Schal C (2008a) Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica. Naturwissenschaften 95:403–412. https://doi.org/10.1007/s00114-007-0339-7
Eliyahu D, Nojima S, Mori K, Schal C (2008b) New contact sex pheromone components of the German cockroach, Blattella germanica, predicted from the proposed biosynthetic pathway. J Chem Ecol 34:229–237. https://doi.org/10.1007/s10886-007-9409-8
Eliyahu D, Nojima S, Mori K, Schal C (2009) Jail baits: how and why nymphs mimic adult females of the German cockroach, Blattella germanica. Anim Behav 78:1097–1105. https://doi.org/10.1016/j.anbehav.2009.06.035
Etges WJ, de Oliveira CC, Rajpurohit S, Gibbs AG (2016) Effects of temperature on transcriptome and cuticular hydrocarbon expression in ecologically differentiated populations of desert Drosophila. Ecol Evol 7:619–637. https://doi.org/10.1002/ece3.2653
Fan Y, Chase J, Sevala VL, Schal C (2002) Lipophorin-facilitated hydrocarbon uptake by oocytes in the German cockroach Blattella germanica (L). J Exp Biol 205:781–790. https://doi.org/10.1242/jeb.205.6.781
Fan Y, Zurek L, Dykstra MJ, Schal C (2003) Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica. Naturwissenschaften 90:121–126. https://doi.org/10.1007/s00114-003-0402-y
Fan Y, Eliyahu D, Schal C (2008) Cuticular hydrocarbons as maternal provisions in embryos and nymphs of the cockroach Blattella germanica. J Exp Biol 211:548–554. https://doi.org/10.1242/jeb.009233
Ferveur JF, Savarit F, O’Kane CJ, Sureau G, Greenspan RJ, Jallon JM (1997) Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 2765318:1555–1558. https://doi.org/10.1126/science.276.5318.1555
Gemeno C, Schal C (2004) Sex pheromones of cockroaches. In: Carde RT, Millar J (eds) Advances in Insect Chemical Ecology. Cambridge University Press, New York, pp 179–247
Gibbs AG (1998) Water-proofing properties of cuticular lipids. Am Zool 38:471–482. https://doi.org/10.1093/icb/38.3.471
Gibbs AG (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400. https://doi.org/10.1016/s0022-1910(02)00059-8
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J (2022) Neglected very long-chain hydrocarbons and the incorporation of body surface area metrics reveal novel perspectives for cuticular profile analysis in insects. Insects 13:83. https://doi.org/10.3390/insects13010083
Gore JC, Schal C (2007) Cockroach allergen biology and mitigation in the indoor environment. Annu Rev Entomol 52:439–463. https://doi.org/10.1146/annurev.ento.52.110405.091313
Gu X, Quilici D, Juárez P, Blomquist GJ, Schal C (1995) Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of the German cockroach Blattella germanica. J Insect Physiol 41:257–267. https://doi.org/10.1016/0022-1910(94)00100-U
Hamu H, Debalke S, Zemene E, Birlie B, Mekonnen Z, Yewhalaw D (2014) Isolation of intestinal parasites of public health importance from cockroaches Blattella germanica in Jimma Town, southwestern Ethiopia. J Parasitol Res 2014:186240. https://doi.org/10.1155/2014/186240
Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H et al (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 23:557–566. https://doi.org/10.1038/s41559-017-0459-1
Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393. https://doi.org/10.1146/annurev.ento.50.071803.130359
Hu YH, Chen XM, Yang P, Ding WF (2018) Characterization and functional assay of a fatty acyl-CoA reductase gene in the scale insect, Ericerus Pela Chavannes (Hemiptera: coccoidae). Arch Insect Biochem Physiol 97:e21445. https://doi.org/10.1002/arch.21445
Jennings JH, Etges WJ, Schmitt T, Hoikkala A (2014) Cuticular hydrocarbons of Drosophila montana: geographic variation, sexual dimorphism and potential roles as pheromones. J Insect Physiol 61:16–24. https://doi.org/10.1016/j.jinsphys.2013.12.004
Juárez MP (2004) Fatty acyl-CoA elongation in Blatella Germanica integumental microsomes. Arch Insect Biochem Physiol 564:170–178. https://doi.org/10.1002/arch.20007
Juárez P, Brenner RR (1989) Fatty acid biosynthesis in the integument tissue of Triatoma infestans. Comp Biochem Physiol B 934:763–772. https://doi.org/10.1016/0305-0491(89)90043-6
Juárez MP, Chase J, Blomquist GJ (1992) A microsomal fatty acid synthetase from the integument of Blattella germanica synthesizes methyl-branched fatty acids, precursors to hydrocarbon and contact sex pheromone. Arch Biochem Biophys 293:333–341. https://doi.org/10.1016/0003-9861(92)90403-J
Juárez MP, Ayala S, Brenner RR (1996) Methyl-branched fatty acid biosynthesis in Triatoma infestans. Insect Biochem Mol Biol 26:599–605. https://doi.org/10.1016/S0965-1748(96)00021-5
Jurenka RA, Schal C, Burns E, Chase J, Blomquist GJ (1989) Structural correlation between cuticular hydrocarbons and female contact sex pheromone of German cockroach Blattella germanica (L). J Chem Ecol 15:939–949. https://doi.org/10.1007/BF01015189
Jurenka R, Blomquist GJ, Schal C, Tittiger C (2017) Biochemistry and molecular biology of pheromone production. Ref Mod Life Sci 2017:705–751. https://doi.org/10.1016/B978-0-12-809633-8.04037-1
Kleine-Tebbe J, Hamilton RG, Goodman RE (2019) Cockroach allergens: coping with challenging complexity. J Allergy Clin Immunol 143:1342–1344. https://doi.org/10.1016/j.jaci.2019.01.028
Koto A, Motoyama N, Tahara H, McGregor S, Moriyama M, Okabe T et al (2019) Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants. Proc Natl Acad Sci USA 116:5597–5606. https://doi.org/10.1073/pnas.1817788116
Kuo TH, Fedina TY, Hansen I, Dreisewerd K, Dierick HA, Yew JY et al (2012) Insulin signaling mediates sexual attractiveness in Drosophila. PLoS Genet 8:e1002684. https://doi.org/10.1371/journal.pgen.1002684
Leonard AE, Pereira SL, Sprecher H, Huang YS (2004) Elongation of long-chain fatty acids. Prog Lipid Res 431:36–54. https://doi.org/10.1016/S0163-7827(03)00040-7
Li DT, Chen X, Wang XQ, Zhang CX (2019) FAR gene enables the brown planthopper to walk and jump on water in paddy field. Sci China Life Sci 6211:1521–1531. https://doi.org/10.1007/s11427-018-9462-4
Li DT, Dai YT, Chen X, Wang XQ, Li ZD, Moussian B, Zhang CX (2020) Ten fatty acyl-CoA reductase family genes were essential for the survival of the destructive rice pest, Nilaparvata lugens. Pest Manag Sci 767:2304–2315. https://doi.org/10.1002/ps.5765
Li DT, Pei XJ, Ye YX, Wang XQ, Wang ZC, Chen N et al (2021) Cuticular Hydrocarbon plasticity in Three Rice Planthopper Species. Int J Mol Sci 22:7733. https://doi.org/10.3390/ijms22147733
Lienard MA, Hagstrom AK, Lassance JM, Lofstedt C (2010) Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc Natl Acad Sci USA 107:10955–10960. https://doi.org/10.1073/pnas.1000823107
Ligonniere S, Raymond V, Goven D (2024) Use of double-stranded RNA targeting β2 divergent nicotinic acetylcholine receptor subunit to control pea aphid Acyrthosiphon pisum at larval and adult stages. Pest Manag Sci 80:896–904. https://doi.org/10.1002/ps.7820
Lin YH, Huang JH, Liu Y, Belles X, Lee HJ (2017) Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest Manag Sci 73:960–966. https://doi.org/10.1002/ps.4407
Locke M (1965) The hormonal control of wax secretion in an insect, Calpodes ethlius Stoll (Lepidoptera, Hesperiidae). J Insect Physiol 11:641–658. https://doi.org/10.1016/0022-1910(65)90147-2
Long GJ, Liu XZ, Guo H, Zhang MQ, Gong LL, Ma YF et al (2023) Oral-based nanoparticle-wrapped dsRNA delivery system: a promising approach for controlling an urban pest, Blattella germanica. J Pest. https://doi.org/10.1007/s10340-023-01677-7. Sci
MacLean M, Nadeau J, Gurnea T, Tittiger C, Blomquist GJ (2018) Mountain pine beetle Dendroctonus ponderosae CYP4Gs convert long and short chain alcohols and aldehydes to hydrocarbons. Insect Biochem Mol Biol 102:11–20. https://doi.org/10.1016/j.ibmb.2018.09.005
Makki R, Cinnamon E, Gould AP (2014) The development and functions of oenocytes. Annu Rev Entomol 59:405–425. https://doi.org/10.1146/annurev-ento-011613-162056
Marican C, Duportets L, Birman S, Jallon JM (2004) Female-specific regulation of cuticular hydrocarbon biosynthesis by dopamine in Drosophila melanogaster. Insect Biochem Mol Biol 34:823–830. https://doi.org/10.1016/j.ibmb.2004.05.002
Menzel F, Blaimer BB, Schmitt T (2017) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc Biol Sci 284:20161727. https://doi.org/10.1098/rspb.2016.1727
Moraes B, Braz V, Santos-Araujo S, Oliveira IA, Bomfim L, Ramos I et al (2022) Deficiency of Acetyl-CoA carboxylase impairs digestion, lipid synthesis, and Reproduction in the kissing bug Rhodnius prolixus. Front Physiol 13:934667. https://doi.org/10.3389/fphys.2022.934667
Mullins DE, Mullins KJ, Tignor KR (2002) The structural basis for water exchange between the female cockroach (Blattella germanica) and her ootheca. J Exp Biol 205:2987–2996. https://doi.org/10.1242/jeb.205.19.2987
Nelson DR, Sukkestad DR (1970) Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm. Biochemistry 9:4601–4611. https://doi.org/10.1021/bi00825a021
Nelson DR, Sukkestad DR, Terranova AC (1971) Hydrocarbon composition of the integument, fat body, hemolymph, and diet of the tobacco hornworm. Life Sci II 10:411–419. https://doi.org/10.1016/0024-3205(71)90053-1
Nishida R, Fukami H (1983) Female sex pheromone of the German cockroach, Blattella germanica. Mem Coll Agric Kyoto Univ 122:1–24
Nishida R, Kuwahara Y, Fukami H, Ishii S (1979) Female sex pheromone of the German cockroach, Blattella germanica (L.). (Orthoptera: Blattellidae), responsible for male wing-raising. IV. The absolute configuration of the pheromone, 3,11-dimethyl-2-nonacosanone. J Chem Ecol 5:289–297
Otte T, Hilker M, Geiselhardt S (2018) Phenotypic plasticity of cuticular hydrocarbon profiles in insects. J Chem Ecol 44:235–247. https://doi.org/10.1007/s10886-018-0934-4
Parvy JP, Napal L, Rubin T, Poidevin M, Perrin L, Wicker-Thomas C et al (2012) Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet 8:e1002925. https://doi.org/10.1371/journal.pgen.1002925
Paszkiewicz M, Sikora A, Boguś MI, Wlóka E, Stepnowski P, Golebiowski M (2016) Effect of exposure to chlorpyrifos on the cuticular and internal lipid composition of Blattella germanica males. Insect Sci 23:94–104. https://doi.org/10.1111/1744-7917.12200
Pei XJ, Chen N, Bai Y, Qiao JW, Li S, Fan YL, Liu TX (2019) BgFas1: a fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L). Insect Biochem Mol Biol 112:103203. https://doi.org/10.1016/j.ibmb.2019.103203
Pei XJ, Fan YL, Bai Y, Bai TT, Schal C, Zhang ZF et al (2021) Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biol 19:e3001330. https://doi.org/10.1371/journal.pbio.3001330
Pei XJ, Bai TT, Luo Y, Zhang ZF, Li S, Fan YL et al (2024) Acetyl coenzyme A carboxylase modulates lipogenesis and sugar homeostasis in Blattella germanica. Insect Sci. 31: 387–404. https://doi.org/10.1111/1744-7917.13245
Pei XJ, Bai TT, Zhang ZF, Chen N, Li S, Fan YL et al (2022) Two putative fatty acid synthetic genes of BgFas3 and BgElo1 are responsible for respiratory waterproofing in Blattella germanica. Insect Sci 29:33–50. https://doi.org/10.1111/1744-7917.12900
Pomés A, Schal C (2020) Cockroach and other inhalant insect allergens. In: Lockey RF, Ledford DK (eds) Allergens and Allergen Immunotherapy. CRC Press/Taylor & Francis Group, New York, pp 237–255
Qiu Y, Tittiger C, Wicker-thomas C, Goff LG, Young S, Wajnberg E et al (2012) An insect-specific p450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA 109:14858–14863. https://doi.org/10.1073/pnas.1208650109
Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ (1994) Unusual mechanism of hydrocarbon formation in the house fly: cytochrome P450 converts aldehyde to the sex pheromone component Z-9-tricosene and CO2. Proc Natl Acad Sci USA 91:10000–10004. https://doi.org/10.1073/pnas.91.21.10000
Schal C, DeVries ZC (2021) Public health and veterinary importance. In: Wang C, Lee C-Y, Rust MK (eds) Biology and Management of the German cockroach. CSIRO Publishing, Clayton VIC, pp 17–52
Schal C, Burns EL, Jurenka RA, Blomquist GJ (1990) A new component of the female sex pheromone of Blattella germanica (L.) (Dictyoptera: Blattellidae) and interaction with other pheromone components. J Chem Ecol 16:1997–2008. https://doi.org/10.1007/BF01020511
Schal C, Gu X, Burns EL, Blomquist GJ (1994) Patterns of biosynthesis and accumulation of hydrocarbons and contact sex pheromone in the female German cockroach, Blattella germanica. Arch Insect Biochem Physiol 25:375–391. https://doi.org/10.1002/arch.940250411
Schal C, Sevala VL, Young HP, Bachmann JA (1998) Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. Am Zool 38:382–393. https://doi.org/10.1093/icb/38.2.382
Sevala VL, Bachmann JA, Schal C (1997) Lipophorin: a hemolymph juvenile hormone binding protein in the German cockroach, Blattella germanica. Insect Biochem Mol Biol 27:663–670. https://doi.org/10.1016/s0022-1910(98)00142-5
Shirai Y, Piulachs MD, Belles X, Daimon T (2022) DIPA-CRISPR is a simple and accessible method for insect gene editing. Cell Rep Methods 2:100215. https://doi.org/10.1016/j.crmeth.2022.100215
Statements & Declarations
Stinziano JR, Sové RJ, Rundle HD, Sinclair BJ (2015) Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comp Biochem Physiol Mol Integr Physiol 180:38–42. https://doi.org/10.1016/j.cbpa.2014.11.004
Storelli G, Nam HJ, Simcox J, Villanueva CJ, Thummel CS (2019) Drosophila HNF4 directs a switch in lipid metabolism that supports the transition to Adulthood. Dev Cell 48:200–214. https://doi.org/10.1016/j.devcel.2018.11.030
Sun J, Liu WK, Ellsworth C, Sun Q, Pan Y, Huang YC, Deng WM (2023) Integrating lipid metabolism, pheromone production and perception by fruitless and hepatocyte nuclear factor 4. Sci Adv 9:eadf6254. https://doi.org/10.1126/sciadv.adf6254
Sutton PA, Wilde MJ, Martin SJ, Cvačka J, Vrkoslav V, Rowland SJ (2013) Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry. J Chromatogr A 1297:236–240. https://doi.org/10.1016/j.chroma.2013.05.006
Teerawanichpan P, Robertson AJ, Qiu X (2010) A fatty acyl-CoA reductase highly expressed in the head of honey bee Apis mellifera involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem Mol Biol 40:641–649. https://doi.org/10.1016/j.ibmb.2010.06.004
Thomas ML, Simmons LW (2008) Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae). J Insect Physiol 54:1081–1089. https://doi.org/10.1016/j.jinsphys.2008.04.012
Thomas ML, Simmons LW (2011) Short-term phenotypic plasticity in long-chain cuticular hydrocarbons. Proc Biol Sci 278:3123–3128. https://doi.org/10.1098/rspb.2011.0159
Tong H, Wang Y, Wang S, Omar MA, Li Z et al (2022) Fatty acyl-CoA reductase influences wax biosynthesis in the cotton mealybug, Phenacoccus Solenopsis Tinsley. Commun Biol 5:1108. https://doi.org/10.1038/s42003-022-03956-y
Vaz AH, Blomquist GJ, Reitz RC (1988) Characterization of the fatty acyl elongation reactions involved in hydrocarbon biosynthesis in the housefly Musca domestica. Insect Biochem 18:177–184. https://doi.org/10.1016/0020-1790(88)90022-4
Wang Y, Norum M, Oehl K, Yang Y, Zuber R, Yang J et al (2020) Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster. PLoS Genet 161:e1008363. https://doi.org/10.1371/journal.pgen.1008363
Wei Y, Appel AG, Moar WJ, Liu N (2001) Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica L. Pest Manag Sci 5711:1055–1059. https://doi.org/10.1002/ps.383
Wexler J, Delaney EK, Belles X, Schal C, Wada-Katsumata A, Amicucci MJ et al (2019) Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. eLife 8:e47490. https://doi.org/10.7554/eLife.47490
Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B et al (2015) Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J Lipid Res 5611:2094–2101. https://doi.org/10.1194/jlr.M060368
Wigglesworth VB (1933) The physiology of the cuticle and of ecdysis in Rhodnius prolixus (triatomidae, hemiptera); with special reference to the function of the oenocytes and of the dermal glands. J Cell Sci s 2–76:269–318. https://doi.org/10.1242/jcs.s2-76.302.269
Young HP, Schal C (1997) Cuticular hydrocarbon synthesis in relation to feeding and developmental stage in nymphs of Blattella germanica (Dictyoptera: Blattellidae). Ann Entomol Soc Am 90:655–663. https://doi.org/10.1093/aesa/90.5.655
Young HP, Larabee JK, Gibbs AG, Schal C (2000) Relationship between tissue-specific hydrocarbon profiles and lipid melting temperatures in the cockroach Blattella germanica. J Chem Ecol 26:1245–1263. https://doi.org/10.1023/A:1005440212538
Yu Z, Wang Y, Zhao X, Liu X, Ma E, Moussian B et al (2017) The ABC transporter ABCH-9 C is needed for cuticle barrier construction in Locusta Migratoria. Insect Biochem Mol Biol 87:90–99. https://doi.org/10.1016/j.ibmb.2017.06.005
Zhang YX, Ge LQ, Jiang YP, Lu XL, Li X, Stanley D et al (2015) RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens. Sci Rep 5:15360. https://doi.org/10.1038/srep15360
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y et al (2023) Lipophorin receptor is required for the accumulations of cuticular hydrocarbons and ovarian neutral lipids in Locusta Migratoria. Int J Biol Macromol 236:123746. https://doi.org/10.1016/j.ijbiomac.2023.123746
Zuber R, Norum M, Wang Y, Oehl K, Gehring N, Accardi D et al (2018) The ABC transporter Snu and the extracellular protein Snsl cooperate in the formation of the lipid-based inward and outward barrier in the skin of Drosophila. Eur J Cell Biol 972:90–101. https://doi.org/10.1016/j.ejcb.2017.12.003
Acknowledgements
We would like to give special thanks to Zhan-Feng Zhang from Northwest A&F University for his help with chemical analysis using GC-MS.
Funding
This work was funded by the National Natural Science Foundation of China (Grant No. 32200384) and China Postdoctoral Science Foundation (2022M710053).
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception, design and writing. Material preparation, data collection and analysis were performed by X-J Pei. The first draft of the manuscript was written by X-J Pei and Y-L Fan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pei, XJ., Schal, C. & Fan, YL. Genetic Underpinnings of Cuticular Hydrocarbon Biosynthesis in the German Cockroach, Blattella germanica (L.): Progress and Perspectives. J Chem Ecol 50, 955–968 (2024). https://doi.org/10.1007/s10886-024-01509-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-024-01509-7
Keywords
Profiles
- Xiao-Jin Pei View author profile
- Coby Schal View author profile