Abstract
The cuticular hydrocarbons (CHCs) of the ant Lasius niger are described. We observe a high local colony specificity of the body cuticular profile as predicted for a monogynous and multicolonial species. The CHCs show a low geographical variation among different locations in France. The CHCs on the legs also are colony specific, but their relative quantities are slightly different from those on the main body. For the first time, we demonstrate that the inner walls of the ant nest are coated with the same hydrocarbons as those found on the cuticle but in different proportions. The high amount of inner-nest marking and its lack of colony-specificity may explain why alien ants are not rejected once they succeed in entering the nest. The cuticular hydrocarbons also are deposited in front of the nest entrance and on the foraging arena, with a progressive increase in n-alkanes relative amounts. Chemical marks laid over the substrate are colony specific only when we consider methyl-branched alkanes. Our data confirm that these “footprint hydrocarbons” are probably deposited passively by the contact of ant tarsae with the substrate. These results suggest that the CHCs chemical profiles used by ants in colony recognition are much more complex than a single template: ants have to learn and memorize odors that vary depending on their context of perception.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
AKINO, T., 2008. Chemical strategies to deal with ants: A review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthopods. Myrmecological News 11:173–181.
AKINO, T., and YAMAOKA, R., 2005. Trail discrimination signal of Lasius japonicus. Chemoecology 15:21–30.
AME, J.-M., RIVAULT, C., and DENEUBOURG, J.-L., 2004. Cockorach aggregation based on strain odour recognition. Anim. Behav. 68:793–801.
ARON, S., STEINHAUER, N., and FOURNIER, D., 2009. Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim. Behav. 77:1067–1074.
BAGNÈRES, A. G., and MORGAN, E. D., 1991. The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia 47:106–111.
BILLEN, J., 2008. Occurrence and structural organization of the exocrine glands in the legs of ants. Arthr. Struct. Develop. 38:2–15.
BONAVITA-COUGOURDAN, A., CLÉMENT, J.-L., and LANGE, C., 1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Scop.: polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol. 19:1461–1477.
BOOMSMA, J. J., and VAN DER HAVE, T. M., 1998. Queen mating and paternity variation in the ant Lasius niger. Mol. Ecol. 7:1709-1718.
BOULAY, R., CERDÁ, X., SIMON, T., ROLDAN, M., and HEFETZ, A., 2007. Intraspecific competition in the ant Camponotus cruentatus: should we expect the ‘dear enneny’ effect? Anim. Behav. 74:985–993.
BUTLER, C. G., FLETCHER, D. J. C., and WALTER, D., 1969. Nest entrance marking with pheromones by the honeybee Apis mellifera and by the wasp Vespula vulgaris. Anim. Behav. 17:142–147.
CAMMAERTS, M.-C., and CAMMAERTS, R., 1998. Marking of nest entrance vicinity in the ant Pheidole pallidula (Formicidae, Myrmicinae). Behav. Process. 42:19–31.
CAMMAERTS, M.-C., and CAMMAERTS, R., 1999. Marking of the nest entrances and their vicinities in the Myrmica rubra. Biologia 54:553–566.
CAMMAERTS, M.-C., and CAMMAERTS, R., 2000. Foraging area in two related Tetramorium ant species. J. Ins. Behav. 13:679–698.
CZECHOWSKI, W., 1984. Tournaments and raids in Lasius niger (L.) (Hymenoptera, Formicidae). Ann. Zool., Warszawa 38:81–91.
DAHBI, A., CERDÁ, X., HEFETZ, A., and LENOIR, A., 1996. Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). J. Chem. Ecol. 22:2173–2186.
DANI, F. R., JONES, G. R., DESTRI, S., SPENCER, S. H., and TURILLAZZI, S., 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62:165–171.
DEPICKÈRE, S., FRESNEAU, D., DETRAIN, C., and DENEUBOURG, J.-L., 2004. Marking as a decision factor in the choice of new resting site in Lasius niger. Ins. Soc. 51:243–246.
D’ETTORRE, P., and LENOIR, A., 2009. Nestmate Recognition in Ants L. Lach, C. Parr and K. Abbott (Eds), Ant Ecology. Oxford University Press, Oxford, in press.
DEVIGNE, C., and DETRAIN, C., 2002. Collective exploitation and area marking in the ant Lasius niger. Ins. Soc. 49:357–362.
DEVIGNE, C., and DETRAIN, C., 2006. How does food distance influence foraging in the ant Lasius niger: The importance of home-range marking. Ins. Soc. 53:46–55.
DEVIGNE, C., RENON, A., and DETRAIN, C., 2004. Out of sight but not out of mind: modulation of recruitment according to home range marking in ants. Anim. Behav. 67:1023–1029.
DINTER, K., PAARMANN, W., PESCHKE, K., and ARNDT, E., 2002. Ecological, behavioural and chemical adaptations to ant predation in species of Thermophilum and Graphipterus (Coleoptera: Carabidae) in the Sahara desert. J. Arid Env. 50:267–286.
DOR, A., MACHKOUR-M’RABET, S., LEGAL, L., WILLIAMS, T., and HENAUT, Y., 2008. Chemically mediated burrow recognition in the mexican tarantula Barchypelma vagans female. Naturwissenschaften 95:1189-1193.
DREIER, S., and D’ETTORRE, P., 2009. Social context predicts recognition systems in ant queens. J. Evol. Biol.: 22:644–649.
FRANKS, N. R., HOOPER, J. W., DORNHAUS, A., AUKETT, P. J., HAYWARD, A. L., and BERGHOFF, S. M., 2007. Reconnaissance and latent learning in ants. Proc. Roy. Soc. London B 274:1505–1509.
GIBBS, A. G., 1998. Water-Proofing properties of cuticular lipids. Amer. Zool. 38:471–482.
GOULSON, D., STOUT, J. C., LANGLEY, J., and HUGUES, W. O. H., 2000. Identity and function of scent marks deposited by foraging bumblebess. J. Chem. Ecol. 26:2897–2911.
GRASSO, D. A., SLEDGE, M. F., LE MOLI, F., MORI, A., and TURILLAZZI, S., 2005. Nest-area marking with faeces: a chemical signature that allows colony-level recognition in seed-harvesting ants (Hymenoptera, Formicidae). Ins. Soc. 52:36-44.
GREENE, M. J., and GORDON, D. M., 2003. Cuticular hydrocarbons inform task decision. Nature 423:32.
GUEDOT, C., PITTS-SINGER, T., BUCKNER, J. S., BOSCH, J., and KEMP, W. P., 2006. Olfactory cues and nest recognition in the solitary bee Osmia lignaria. Physiol. Entomol. 31:110–119.
HEFETZ, A., 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosynchrasy. Myrmecol News 10:59–68.
HÖLLDOBLER, B., and WILSON, E. O., 1990. The Ants. The Belknap, Cambridge, 782
LAHAV, S., SOROKER, V., VANDER MEER, R. K., and HEFETZ, A., 1998. Nestmate recognition in the ant Cataglyphis niger: do queens matter? Behav. Ecol. Sociobiol. 43:203–212.
LENOIR, A., CUISSET, D., and HEFETZ, A., 2001a. Effects of social isolation on hydrocarbon pattern and nestmate recognition in the ant Aphaenogaster senilis (Hymenoptera: Formicidae). Ins. Soc. 48:101–109.
LENOIR, A., D’ETTORRE, P., ERRARD, C., and HEFETZ, A., 2001b. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599.
LENOIR, J.-C., SCHREMPF, A., LENOIR, A., HEINZE, J., and MERCIER, J.-L., 2006. Genetic structure and reproductive strategy in the ant Cardiocondyla elegans: strictly monogynous nests invaded by unrelated sexuals. Mol. Ecol. 16:345–354.
LORENZO FIGUEIRAS, A. N., and LAZZARI, C. R., 1998. Aggregation in the haematophagous bug Triatoma infestans: a novel assembling factor. Physiol. Entomol. 23:33–37.
MARTIN, S. J., and DRIJFHOUT, F. P., 2009. Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. doi:10.1007/s10886-009-9612-x.
MARTIN, S. J., HELANTERÄ, H., and DRIJFHOUT, F. P., 2008a. Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol. J. Linn. Soc. 95:131–140.
MARTIN, S. J., VITIKAINEN, E., HELANTERÄ, H., and DRIJFHOUT, F. P., 2008b. Chemical basis of nestmate discrimination in the ant Formica exsecta. Proc. Roy. Soc. London, B 275:1271–1278.
MAYADE, S., CAMMAERTS, M. C., and SUZZONI, J. P., 1993. Home range marking and territorial marking in Cataglyphis cursor (Hymenoptera: Formicidae). Behav. Process. 30:131–142.
NOWBAHARI, E., LENOIR, A., CLÉMENT, J. L., LANGE, C., BAGNÈRES, A. G., and JOULIE, C., 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–74.
OLIVER, T. H., MASHANOVA, A., LEATHER, S. R., COOK, J. M., and JANSEN, V. A. A., 2007. Ant semiochemicals limit apterous aphid dispersal. Proc. Roy. Soc. London, B.
OZAKI, M., WADA-KATSUMATA, A., FUJIKAWA, K., IWASAKI, M., YOKOHARI, F., SATOJI, Y., NISIMURA, T., and YAMAOKA, R., 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309.
SALEH, N., SCOTT, A. G., BRYNING, G. P., and CHITTKA, L., 2007. Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthr.-Plant Inter. 1:119–127.
SLEDGE, M. F., MONETI, G., PIERACCINI, G., and TURILLAZZI, S., 2000. Use of solid-phase microextraction in the investigation of chemical communication in social wasps. J. chrom. A 973:73–77.
SOROKER, V., and HEFETZ, A., 2000. Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. J. Ins. Physiol. 46:1097–1102.
STECK, K., HANSSON, B. S., and KNADEN, M., 2009. Smells like home: desert ants, Cataglyphis fortis, use olfactory ladmarks to pinpoint the nest. Front. Zool. 6:5.
STEINER, F. M., SCHLICK-STEINER, B. C., NIKIFOROV, A., KALB, R., and MISTRIK, R., 2002. Cuticular hydrocarbons of Tetramorium ants from Central Europe: analysis of GC-MS data with self-organizing maps (SOM) and implications for systematics. J. Chem. Ecol. 28:2569–2584.
TENTSCHERT, J., BESTMANN, H.-J., and HEINZE, J., 2002. Cuticular compounds of workers and queens in two Leptothorax ant species—a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecol. 12:15–21.
UGELVIG, L. V., DRIJFHOUT, F. P., KRONAUER, D. J. C., BOOMSMA, J. J., PEDERSEN, J. S., and CREMER, S., 2008. The introduction history of invasive garden ants in Europe: Integrating genetic, chemical and behavioural approaches. BMC Biol. 6:11:doi:10.1186/1741-7007-6-11.
VAN DER HAVE, T. M., BOOMSMA, J. J., and MENKEN, S. B. J., 1988. Sex-investment ratios and relatedness in the monogynous ant Lasius niger. Evol. 42:160–172.
WAGNER, D., TISSOT, M., and GORDON, D. M., 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol 27:1805–1819.
WENSELEERS, T., BILLEN, J., and HEFETZ, A., 2002. Territorial marking in the desert ant Cataglyphis niger: does it pay to play bourgeois? J. Ins. Behav. 15:85–93.
WITTE, V., LEINGÄRTNER, A., SABAß, L., HASHIM, R., and FOITZIK, S., 2008. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim. Behav. 76:1477–1486.
YAMAOKA, R., and AKINO, T. (1994). Ecological Importance of Cuticular Hydrocarbons Secreted from the Tarsus of Ants. Les Insectes Sociaux, Paris-Sorbonne, 21–27 août 1994, Univ. Paris Nord.
Acknowledgments
We thank Guy Bourdais for help in ant rearing, Xavier Espadaler and Bernard Seifert for verification of the ant species determination, and two anonymous reviewers for helpful comments. C. Detrain is senior research associate from the Belgian National Fund for Scientific Research. This work was partially supported by a grant from the FRFC (N° 2.4600.09).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Table S1
List of hydrocarbons and relative quantities (Mean ± SD) obtained from liquid extracts and SPME. (XLS 38 kb)
High Resolution Image
(TIFF 3031 kb)
Fig. S2
Discriminant analysis of colonies T5, T6 and T7 for hydrocarbons obtained by SPME from the cuticle and legs, with the colony as a grouping factor. Ellipses are 95% confidence intervals.
High Resolution Image
(TIFF 860 kb)
Rights and permissions
About this article
Cite this article
Lenoir, A., Depickère, S., Devers, S. et al. Hydrocarbons in the Ant Lasius niger: From the Cuticle to the Nest and Home Range Marking. J Chem Ecol 35, 913–921 (2009). https://doi.org/10.1007/s10886-009-9669-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-009-9669-6