Skip to main content
Log in

Reaction of Mutualistic and Granivorous Ants to Ulex Elaiosome Chemicals

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

It has been proposed that chemicals on plant elaiosomes aid seed detection by seed-dispersing ants. We hypothesized that the chemical interaction between ants and elaiosomes is more intimate than a generic attraction, and that elaiosome chemicals will attract mutualistic but not granivorous ant species. We investigated this by using two gorse species, Ulex minor and U. europaeus, and two associated ant species from European heathlands, the mutualist Myrmica ruginodis and the granivore Tetramorium caespitum. Behavioral studies were conducted with laboratory nests and foraging arenas. Both ants will take Ulex seeds, but while M. ruginodis showed increased antennation toward ether extracts of elaiosome surface chemicals compared with controls, T. caespitum showed no response. Elaiosome extracts were separated into seven lipid fractions. M. ruginodis showed increased antennation only toward the diglyceride fractions of both Ulex species, whereas T. caespitum showed no consistent reaction. This indicates that M. ruginodis can detect the elaiosome by responding to its surface chemicals, but T. caespitum is unresponsive to these chemicals. Responses to surface chemicals could increase the rate of seed detection in the field, and so these results suggest that Ulex elaiosomes produce chemicals that facilitate attraction of mutualistic rather than granivorous ant species. This could reduce seed predation and increase Ulex fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, A. N. 1988. Soil of the nest-mound of the seed-dispersing ant, Aphaenogaster longiceps, enhances seedling growth. Aust. J. Bot. 13:469–471.

    Google Scholar 

  • Beattie, A. J. 1985. The Evolutionary Ecology of Ant–Plant Mutualisms. Cambridge University Press, Cambridge.

    Google Scholar 

  • Beattie, A. J. 1991. Problems outstanding in ant-plant interaction research, pp. 559–576, in C. R. Huxley and D. F. Cutler (eds.). Ant–Plant Interactions. 1 ed. Oxford Science Publications, Oxford.

    Google Scholar 

  • Bond, W. J., Yeaton, R., and Stock, W. D. 1991. Myrmecochory in Cape fynbos, pp. 448–462, in C. R. Huxley and D. F. Cutler (eds.). Ant–Plant Interactions. Oxford Scientific Publications, Oxford.

    Google Scholar 

  • Bresinsky, A. 1963. Bau, Entwicklungsgeschichte und Inhaltsstoffe der Elaiosomen. Studien zur myrmekochoren Verbreitung von Samen und Fruechten. Bibl. Bot. 126:1–54.

    Google Scholar 

  • Brew, C. R., Odowd, D. J., and Rae, I. D. 1989. Seed dispersal by ants—behavior-releasing compounds in elaiosomes. Oecologia 80:490–497.

    Article  Google Scholar 

  • Brian, M. V. 1964. Ant distribution in a Southern heath. J. An. Ecol. 25:319–337.

    Article  Google Scholar 

  • Brian, M. V. 1977. Ants. Collins, London.

    Google Scholar 

  • Brian, M. V. and Abbott, A. 1977. The control of food flow in a society of the ant Myrmica rubra L. Anim. Behav. 25:1047–1055.

    Article  Google Scholar 

  • Christian, C. E. and Stanton, M. L. 2004. Cryptic consequences of a dispersal mutualism: Seed burial, elaiosome removal, and seed-bank dynamics. Ecology 85:1101–1110.

    Article  Google Scholar 

  • Davidson, D. W. and Morton, S. R. 1981. Myrmecochory in some plants (F. Chenopodiaceae) of the Australian arid zone. Oecologia 50:357–366.

    Article  Google Scholar 

  • De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580.

    Article  PubMed  CAS  Google Scholar 

  • Elmes, G. W., Wardlaw, J. C., Schönrogge, K., Thomas, J. A., and Clarke, R. T. 2004. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica ant species. Entomol. Exp. Appl. 110:53–63.

    Article  Google Scholar 

  • Espadaler, X. and Gomez, C. 1996. Seed production, predation and dispersal in the Mediterranean myrmecochore Euphorbia characias (Euphorbiaceae). Ecography 19:7–15.

    Article  Google Scholar 

  • Espadaler, X. and Gomez, C. 1997. Falling or movement of seeds and the presence of an elaiosome: Its affect on ant reaction (Hymenoptera: Formicidae) in a myrmecochorous species, Euphorbia characias (Euphorbiaceae). Sociobiology 30:175–183.

    Google Scholar 

  • Gammans, N., Bullock, J. M., and Schönrogge, K. 2005. Ant benefits in a seed dispersal mutualism. Oecologia 146:43–49.

    Article  PubMed  Google Scholar 

  • Gomez, C. and Espadaler, X. 1998. Myrmecochorous dispersal distances: A world survey. J. Biogeogr. 25:573–580.

    Article  Google Scholar 

  • Gordon, D. M. 1983. Dependence of necrophoric response to oleic-acid on social-context in the ant Pogonomyrmex badius. J. Chem. Ecol. 9:105–111.

    Article  CAS  Google Scholar 

  • Handel, S. N. and Beattie, A. J. 1990. Seed dispersal by ants. Sci. Am. 263:76.

    Article  Google Scholar 

  • Heinken, T. 2004. Migration of an annual myrmecochore: A four year experiment with Melampyrum pratense. Plant Ecol. 150:55–72.

    Google Scholar 

  • Hölldobler, B. and Wilson, E. O. 1990. The Ants. Belknap, Harvard.

    Google Scholar 

  • Hughes, L. and Westoby, M. 1992. Effect of diaspore characteristics on removal of seeds adapted for dispersal by ants. Ecology 73:1300–1312.

    Article  Google Scholar 

  • Hulme, P. E. 2002. Seed-eaters: Seed dispersal, destruction and demography, pp. 257–273, in D. J. Levey, W. R. Silva, and M. Galleti (eds.). Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CAB International, Wallingford.

    Google Scholar 

  • Kalunzy, M. A., Duncan, L. A., Merrit, M. V., and Epps, D. E. 1985. Rapid separations of lipid classes in high yield and purity using bonded phase columns. J. Lipid Res. 26:135–140.

    Google Scholar 

  • Kjellsson, G. 1985. Seed fate in a population of Carex pilulifera .1. Seed dispersal and ant–seed mutualism. Oecologia 67:416–423.

    Article  Google Scholar 

  • Kusmenoglu, S., Rockwood, L. L., and Gretz, M. R. 1989. Fatty acids and diacylglycerols from elaiosomes of some ant-dispersed seeds. Phytochemistry 28:2601–2602.

    Article  CAS  Google Scholar 

  • Lanza, J., Schmitt, M. A., and Awad, A. B. 1992. Comparative chemistry of elaiosomes of three species of Trillium. J. Chem. Ecol. 18:209–221.

    Article  CAS  Google Scholar 

  • Mark, S. and Olesen, J. M. 1996. Importance of elaiosome size to removal of ant-dispersed seeds. Oecologia 107:95–101.

    Article  Google Scholar 

  • Marshall, D. L., Beattie, A. J., and Bollenbacher, W. E. 1979. Evidence for diglycerides as attractants in an ant–seed interaction. J. Chem. Ecol. 5:335–344.

    Article  CAS  Google Scholar 

  • Muller, C. and Riederer, M. 2005. Plant surface properties in chemical ecology. J. Chem. Ecol. 31:2621–2651.

    Article  PubMed  CAS  Google Scholar 

  • Ohkawara, K., Ohara, M., and Higashi, S. 1997. The evolution of ant-dispersal in a spring-ephemeral Corydalis ambigua (Papaveraceae): Timing of seed-fall and effects of ants and ground beetles. Ecography 20:217–223.

    Article  Google Scholar 

  • Raine, N. E., Gammans, N., MacFadyen, I. J., Scrivner, G. K., and Stone, G. N. 2004. Guards and thieves: Antagonistic interactions between two ant species coexisting on the same ant–plant. Ecol. Entomol. 29:345–352.

    Article  Google Scholar 

  • Retana, J., Pico, F. X., and Rodrigo, A. 2004. Dual role of harvesting ants as seed predators and dispersers of a non-myrmechorous Mediterranean perennial herb. Oikos 105:377–385.

    Article  Google Scholar 

  • Rice, B. and Westoby, M. 1986. Evidence against the hypothesis that ant-dispersed seeds reach nutrient-enriched microsites. Ecology 67:1270–1274.

    Article  Google Scholar 

  • Sheridan, S. L., Iversen, K. A., and Itagakis, H. 1996. The role of chemical senses in seed-carrying behaviour by ants: A behavioural, physiological and morphological study. J. Insect Physiol. 42:149–159.

    Article  CAS  Google Scholar 

  • Skidmore, B. A. and Heithaus, E. R. 1988. Lipid cues for seed-carrying by ants in Hepatica americana. J. Chem. Ecol. 14:2185–2196.

    Article  CAS  Google Scholar 

  • Skinner, G. J. 1987. Ants of the British Isles. Shire Publishing, Buckinghamshire.

    Google Scholar 

  • Slingsby, P. and Bond, W. J. 1981. Ants—Friends of the Fynbos. Veld Flora 67:39–45.

    Google Scholar 

  • Stokes, K. E., Bullock, J. M., and Watkinson, A. R. 2003. Ulex gallii Planch. and Ulex minor Roth. Biological Flora of the British Isles. J. Ecol. 91:1106–1124.

    Article  Google Scholar 

  • Thomas, J. A., Knapp, J. J., Akino, T., Gerty, S., Wakamura, S., Simcox, D. J., Wardlaw, J. C., and Elmes, G. W. 2002. Insect communication: Parasitoid secretions provoke ant warfare—Subterfuge used by a rare wasp may be the key to an alternative type of pest control. Nature 417:505–506.

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw, J. C. and Elmes, G. W. 1996. Exceptional colony size in Myrmica species (Hymenoptera: Formicoidea). Entomologist 115:191–196.

    Google Scholar 

  • Wardlaw, J. C., Elmes, G. W., and Thomas, J. A. 1998. Techniques for studying Maculinea butterflies: 1. Rearing Maculinea caterpillars with Myrmica ants in the laboratory. J. Insect Conserv. 2:79–84.

    Article  Google Scholar 

  • Weissburg, M. J., Ferner, M. C., Piscut, D. P., and Smee, D. L. 2002. Ecological consequences of chemically mediated prey perception. J. Chem. Ecol. 28:1953–1970.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E. O., Durlach, N. I., and Roth, L. M. 1958. Chemical releasers of necrophoric behaviour in ants. Psyche 65:108–114.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sophie Everett, Andrew Worgan, and Emma Napper for help and advice with the chemical protocols; Michael Fenner and Judith Wardlaw for criticisms; and Francis Haynes for her help. Two anonymous referees gave useful criticisms. This study was funded by the UK Natural Environment Research Council research studentship to Nicola Gammans, NER/S/A/2002/11078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Bullock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gammans, N., Bullock, J., Gibbons, H. et al. Reaction of Mutualistic and Granivorous Ants to Ulex Elaiosome Chemicals. J Chem Ecol 32, 1935–1947 (2006). https://doi.org/10.1007/s10886-006-9119-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9119-7

Keywords

Navigation