Skip to main content
Log in

A Permutation Related to Non-compact Global Attractors for Slowly Non-dissipative Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider scalar reaction-diffusion equations with non-dissipative nonlinearities generating global semiflows which exhibit blow-up in infinite time. This type of equations was only recently approached and the corresponding dynamical systems are known as slowly non-dissipative systems. The existence of unbounded solutions, referred to as grow-up solutions, requires the introduction of some objects interpreted as equilibria at infinity. By extending known results, we are able to obtain a complete decomposition of the associated non-compact global attractor. The connecting orbit structure is determined based on the Sturm permutation method, which yields a simple criterion for the existence of heteroclinic connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amann, H.: Global existence for semilinear parabolic systems. J. Reine Angew. Math. 360, 47–83 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Babin, A.V., Vishik, M.: Attractors of evolution equations. Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)

  3. Brunovskỳ, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations. Dynamics Reported, vol. 1, pp. 57–89. Dynam. Report. Ser. Dynam. Systems Appl., vol. 1. Wiley, Chichester (1988)

  4. Brunovskỳ, P., Fiedler, B.: Connecting orbits in scalar reaction diffusion equations II. The complete solution. J. Differ. Equ. 81(1), 106–135 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Gal, N.: Grow-up solutions and heteroclinics to infinity for scalar parabolic PDEs. Thesis (Ph.D.), Brown University (2010)

  6. Ben-Gal, N.: Non-compact global attractors for slowly non-dissipative PDEs I: the asymptotics of bounded and grow-up heteroclinics. Preprint (2011)

  7. Ben-Gal, N.: Non-compact global attractors for slowly non-dissipative PDEs II: the connecting orbit structure. Preprint (2011)

  8. Brunovskỳ, P.: The attractor of the scalar reaction diffusion equation is a smooth graph. J. Dynam. Differ. Equ. 2(3), 293–323 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brunovskỳ, P., Tereščák, I.: Regularity of invariant manifolds. J. Dynam. Differ. Equ. 3(3), 313–337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc, Englewood Cliffs (1976)

  11. Fusco, G., Rocha, C.: A permutation related to the dynamics of a scalar parabolic PDE. J. Differ. Equ. 91(1), 111–137 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiedler, B., Rocha, C.: Heteroclinic orbits of semilinear parabolic equations. J. Differ. Equ. 125(1), 239–281 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fiedler, B., Rocha, C.: Realization of meander permutations by boundary value problems. J. Differ. Equ. 156(2), 282–308 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiedler, B., Rocha, C.: Orbit equivalence of global attractors of semilinear parabolic differential equations. Trans. Am. Math. Soc. 352(1), 257–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hale, J.K.: Dynamical systems and stability. J. Math. Anal. Appl. 26(1), 39–59 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hale, J.K.: Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  17. Hale, J.K., Massatt, P., Asymptotic behavior of gradient-like systems. Dynamical Systems, II (Gainesville, 1981), pp. 85–101. Academic Press, New York (1982)

  18. Hell, J.: Conley index at infinity. Topol. Methods Nonlinear Anal. 42(1), 137–167 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

  20. Matano, H.: Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ. 18(2), 221–227 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matano, H.: Asymptotic behavior of solutions of semilinear heat equations on \({S}^1\). Nonlinear Diffusion Equations and their Equilibrium States, II (Berkeley, CA, 1986). Math. Sci. Res. Inst. Publ., vol. 13. Springer, New York (1988)

  23. Matano, H., Nakamura, K.: The global attractor of semilinear parabolic equations on \({S}^1\). Discrete Contin. Dynam. Syst. 3(1), 1–24 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Miklavčič, M.: A sharp condition for existence of an inertial manifold. J. Dynam. Differ. Equ. 3(3), 437–456 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazy, A. Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

  26. Pimentel, J.: Asymptotic behavior of slowly non-dissipative systems. Thesis (Ph.D.)-Instituto Superior Técnico—Universidade de Lisboa (2014)

  27. Rocha, C.: Generic properties of equilibria of reaction-diffusion equations with variable diffusion. Proc. R. Soc. Edinburgh: Sect. A 101(1–2), 45–55 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rocha, C.: Properties of the attractor of a scalar parabolic PDE. J. Dynam. Differ. Equ. 3(4), 575–591 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolfrum, M.: A sequence of order relations: encoding heteroclinic connections in scalar parabolic PDE. J. Differ. Equ. 183(1), 56–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zelenyak, T.I.: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differ. Equ. 4(1), 17–22 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by FCT/Portugal through the project PEst-OE/EEI/LA0009/2013. The first author was supported by SFRH/BD/51389/2011 (FCT/Portugal), and GDE/246318/2012-0 (CNPq-Brazil). The authors also acknowledge the useful comments of the referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Pimentel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, J., Rocha, C. A Permutation Related to Non-compact Global Attractors for Slowly Non-dissipative Systems. J Dyn Diff Equat 28, 1–28 (2016). https://doi.org/10.1007/s10884-014-9414-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9414-x

Keywords

Navigation