Skip to main content
Log in

A Hilbert Space Perspective on Ordinary Differential Equations with Memory Term

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We discuss ordinary differential equations with delay and memory terms in Hilbert spaces. By introducing a time derivative as a normal operator in an appropriate Hilbert space, we develop a new approach to a solution theory covering integro-differential equations, neutral differential equations and general delay differential equations within a unified framework. We show that reasonable differential equations lead to causal solution operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For a Hilbert space \(H\) and a bounded, measurable function \(\phi :\mathbb {R}\rightarrow \mathbb {R}\), we denote

    $$\begin{aligned} (\phi (m_0)f)(t):=\phi (t)f(t)\quad (t\in \mathbb {R},f\in H_{\varrho ,0}(\mathbb {R})\otimes H). \end{aligned}$$
  2. Such type of problems will be discussed later, when we come to initial value problems.

References

  1. Akhiezer, N.I., Glazman, I.M.: Theory of linear operators in Hilbert space (vol. I, II. trans from the 3rd Russian ed. by Dawson, E.R., ed. by Everitt, W.N.). Monographs and Studies in Mathematics, 9, 10. Pitman Advanced Publishing Program, Publication in Association with Scottish Academic Press, Edinburgh. Boston, London, Melbourne. vol. XXXII, p. 552 (1981)

  2. Balachandran, B., Gilsinn, D.E., Kalmár-Nagy, T.: Delay Differential Equations. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Diekmann, O., Gyllenberg, M.: Abstract delay equations inspired by population dynamics. Functional Analysis and Evolution Equations, pp. 187–200. Birkhäuser, Basel (2008)

    Chapter  Google Scholar 

  4. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.-O.: Delay Equations. Springer, New York (1995)

    Book  MATH  Google Scholar 

  5. Doan, T.S., Siegmund, S.: Differential Equations with Random Delay. Fields Communication Series, vol. 61, pp. 279–303. Springer (2013)

  6. Ghavidel, S.M.: Existence and flow invariance of solutions to non-autonomous partial differential delay equations, Ph.D. thesis (2007)

  7. Gopalsamy K.: Stability and oscillations in delay differential equations of population dynamics. Mathematics and its Applications (Dordrecht) 74, vol. xii, p. 501. Kluwer Academic Publishers, Dordrecht (1992)

  8. Hale, J.K.: A stability theorem for functional-differential equations. Proc. Natl. Acad. Sci. USA 50, 942–946 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hale, J.K.: Functional differential equations with infinite delay. J. Math. Anal. Appl. 48, 276–283 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations, vol. 99. Springer (Appl. Math. Sci.), New York (1993)

    MATH  Google Scholar 

  11. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin, Heidelberg, New York (1980)

    MATH  Google Scholar 

  12. Lakshmikantham, V., Leela, S., Drici, Z., McRae, F.A.: Theory of Causal Differential Equations. Atlantis Studies in Mathematics for Engineering and Science, vol. 5 (2010). doi:10.2991/978-94-91216-25-1

  13. Naylor, A.W., Sell, G.R.: Linear Operator Theory in Engineering and Science. Repr. of the 1971 orig. Holt, Rinehart & Winston Inc., New York (1982)

  14. Morgenstern, D.: Beiträge zur nichtlinearen Funktionalanalysis. Ph.D. thesis, TU Berlin (1952)

  15. Picard, R.: Hilbert Space Approach to Some Classical Transforms. Pitman Research Notes in Mathematics Series, vol. 196. Longman Scientific & Technical Inc., Harlow, p. 203. Wiley, New York (1989)

    MATH  Google Scholar 

  16. Picard, R.: A structural observation for linear material laws in classical mathematical physics. Math. Methods Appl. Sci. 32(14), 1768–1803 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Picard, R., McGhee, D.: Partial differential equations: a unified hilbert space approach. De Gruyter Expositions in Mathematics, vol. 55 (2011)

  18. Picard, R., Trostorff, S., Waurick, M.: A Functional analytic perspective to delay differential equations. In: Operators and Matrices, Special issue for the conference Spectral Theory and Differential Operators (2012, to appear)

  19. Picard, R., Trostorff, S., Waurick, M.: On evolutionary equations with material laws containing fractional integrals. http://arxiv.org/pdf/1304.7620 (2013)

  20. Reed, M., Simon, B.: Methods of modern mathematical physics I-IV. Academic Press, New York, 1972–79

  21. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  22. Ruess, W.M.: Linearized stability for nonlinear evolution equations. J. Evol. Equ. 3, 361–373 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Ruess, W.M.: Flow invariance for nonlinear partial differential delay equations. Trans. Am. Math. Soc. 361, 4367–4403 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Thomas, E.G.F.: Vector-valued integration with applications to the operator-valued \(H^\infty \) space. IMA J. Math. Control Inf. 14(2), 109–136 (1997)

    Article  MATH  Google Scholar 

  25. Vasundhara Devi, J.: Generalized monotone iterative technique for set differential equations involving causal operators with memory. Int. J. Adv. Eng. Sci. Appl. Math. 3, 1–4 (2007). doi:10.1007/s12572-011-0031-1

    MathSciNet  Google Scholar 

  26. Waurick, M.: Limiting processes in evolutionary equations—a Hilbert space approach to homogenization. Ph.D. thesis, TU Dresden (2011)

  27. Waurick, M.: A Hilbert space approach to homogenization of linear ordinary differential equations including delay and memory terms. Math. Methods Appl. Sci. 35, 1067–1077 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Waurick, M.: A note on causality in reflexive Banach spaces. http://arxiv.org/pdf/1306.3851 (2013)

  29. Waurick, M., Kaliske, M.: A note on homogenization of ordinary differential equations with delay term. PAMM 11, 889–890 (2011)

    Article  Google Scholar 

  30. Weidmann, J.: Linear Operators in Hilbert Spaces, 68 (trans by Joseph Szcs). Graduate Texts in Mathematics, vol. XIII, p. 402. Springer, New York, Heidelberg, Berlin (1980)

  31. Weiss, G., Tucsnak, M.: How to get a conservative well-posed linear system out of thin air. I: Well-posedness and energy balance. ESAIM 9, 247–274 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Werner, D.: Functional Analysis. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Wolfgang Ruess for stimulating discussions and encouragement

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Siegmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalauch, A., Picard, R., Siegmund, S. et al. A Hilbert Space Perspective on Ordinary Differential Equations with Memory Term. J Dyn Diff Equat 26, 369–399 (2014). https://doi.org/10.1007/s10884-014-9353-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9353-6

Keywords

Mathematics Subject Classification

Navigation