Skip to main content
Log in

First and Second Order Approximations for a Nonlinear Wave Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider the following nonlinear half-wave equation:

$$\begin{aligned} i\partial _t\mathcal{V }-|D|\mathcal{V }=|\mathcal{V }|^2\mathcal{V }, \end{aligned}$$
(NLW)

where \(D = -i \partial _{x}\), both on \(\mathbb{R }\) and \(\mathbb{T }\). On \(\mathbb{R }\), we prove that, if the initial condition is of order \(O({\varepsilon })\) and supported on positive frequencies only, then the corresponding solution can be approximated by the solution of the Szegő equation. The Szegő equation \(i\partial _tu=\Pi _+(|u|^2u)\), where \(\Pi _+\) is the Szegő projector onto non-negative frequencies, is a completely integrable system that gives an accurate description of solutions of (NLW). The approximation holds for a long time \(0\le t\le C{\varepsilon }^{-2}\big [\log (1/{\varepsilon }^{\delta })\big ]^{1-2\alpha }\), \(0\le \alpha \le 1/2\). The proof is based on the renormalization group method. As a corollary, we give an example of a solution of (NLW) on \(\mathbb{R }\) whose high Sobolev norms grow over time, relative to the norm of the initial condition. An analogous result of approximation was proved by Gérard and Grellier (Anal PDEs, arXiv:1110.5719v1) on \(\mathbb{T }\) using Birkhoff normal forms. We improve their result by finding a second order approximation with the help of an averaging method. We show, in particular, that the effective dynamics is no longer given by the Szegő equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou Salem, W.K.: On the renormalization group approach to perturbation theory for PDEs. Ann. Henri Poincaré 11(6), 1007–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogolyubov, N.N., Mitropol’skii, YuA: Asymptotic Methods in the Theory of Nonlinear Oscillations. Hindustan, Delhi (1958)

    MATH  Google Scholar 

  3. Chen, L.-Y., Goldenfeld, N., Oono, Y.: Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett. 73(10), 1311–1315 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.-Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations: multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 543(1), 376–394 (1996)

    Article  Google Scholar 

  5. De Ville, R., Harkin, A., Holzer, M., Josic, K., Kaper, T.: Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations. Physica D 237, 1029–1052 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gérard, P., Grellier, S.: The cubic Szegö equation. Annales Scientifiques de l’Ecole Normale Supérieure, Paris, \(4^e\) série, t. 43, 761–810 (2010)

  7. Gérard, P., Grellier, S.: Invariant tori for the cubic Szegö equation. Inventiones Mathematicae 187, 707–754 (2012)

    Google Scholar 

  8. Gérard, P., Grellier, S.: Effective integrable dynamics for some nonlinear wave equation. to appear in Analysis and PDEs, arXiv:1110.5719v1

  9. Germain, P.: Space-time resonances, arXiv:1102.1695

  10. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 2D quadratic Schrödinger equations, arXiv:1001.5158

  11. Germain, P.: Global existence for coupled Klein-Gordon equations with different speeds, arXiv:1005.5238

  12. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris 347(15–16), 897–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. IMRN 3, 414–432 (2009)

    MathSciNet  Google Scholar 

  14. Gustafson, S., Nakanishi, K., Tsai, T.-P.: Scattering theory for the Gross-Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11(4), 657–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krieger, J., Lenzmann, E., Raphael, P.: Non dispersive solutions to the \(L^2\) critical half wave equation, arXiv:1203.2476

  16. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moise, I., Temam, R.: Renormalization group method. Applications to Navier Stokes equation. Discret. Cont. Dyn. Syst. 6, 191–200 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Moise, I., Ziane, M.: Renormalization group method. Applications to partial differential equations. J. Dyn. Differ. Equ. 13, 275–321 (2001)

    Google Scholar 

  19. Shatah, J.: Space-time resonances. Quart. Appl. Math. 68(1), 161–167 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Petcu, M., Temam, R., Wirosoetisno, D.: Renormalization group method applied to the primitive equations. J. Differ. Equ. 208, 215–257 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pocovnicu, O.: Traveling waves for the cubic Szegö equation on the real line. Anal. PDE 4(3), 379–404 (2011)

    Article  MathSciNet  Google Scholar 

  22. Pocovnicu, O.: Explicit formula for the solution of the Szegő equation on the real line and applications. Disc. Cont. Dyn. Sys. A 31(3), 607–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Temam, R., Wirosoetisno, D.: Averaging of differential equations generating oscillations and an application to control. Special issue dedicated to the memory of Jacques-Louis Lions. Appl. Math. Optim. 46(2–3), 313–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ziane, M.: On a certain renormalization group method. J. Maths. Phys., 41(5), (2000)

Download references

Acknowledgments

The author would like to thank her Ph.D. advisor Prof. Patrick Gérard for suggesting this problem and for interesting discussions. She is also grateful to Tadahiro Oh for giving her the reference [1], from which she learned about the renormalization group method. Finally, she would like to thank the referee for his comments that helped improve significantly the quality of the exposition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Pocovnicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pocovnicu, O. First and Second Order Approximations for a Nonlinear Wave Equation. J Dyn Diff Equat 25, 305–333 (2013). https://doi.org/10.1007/s10884-013-9286-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9286-5

Keywords

Navigation