Skip to main content
Log in

Strong Stability of KAM Tori: from the Point of View of Viscosity Solutions of H-J Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

It is well-known that a KAM torus can be considered as a graph of smooth viscosity solution. Salamon and Zehnder (Comment Math Helv 64:84–132, 1989) have proved that there exist invariant tori having prescribed Diophantine frequencies for nearly integrable and positively definite Lagrangian systems with associated Hamiltonian H, whose Diophantine index is τ. If the invariant torus is represented as \({\mathcal{G}=\bigcup\limits_{x\in \mathbb{T}^n}(x,P_0+Dv(x,P_0))}\) in the cotangent bundle \({T^{*}\mathbb{T}^n}\), then we can show that for any viscosity solution u (x, P), which satisfies the H-J Eq. (1.1),

$$\|Du(x,P)-Dv(x,P_0)\|_{\infty} \le C\|P-P_0\|^{\frac{1}{\tau+1}},$$

when \({\|P-P_0\|}\) is small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein D., Katok A.: Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians. Invent. Math. 88, 225–242 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bourgain J., Golse F., Wennberg B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190, 491–508 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dumas H.S.: Ergodization rates for linear flow on the torus. J. Dyn. Diff. Equat. 3, 593–610 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Evans L.C., Gomes D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fathi, A.: Weak KAM theorem in Lagrangian dynamics. Seventh Preliminary Version (2006)

  6. Gomes D.: Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math. Anal. 35, 135–147 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lions, P.L., Papanicolao, G., Varadhan, S.R.S.: Homogeneization of Hamilton-Jacobi equations, Preliminary Version (1988)

  8. Mather, J.: Modulus of continuity for Peierls’s barrier. In: Rabinowitz, P.H. et al. (eds.) Periodic Solutions of Hamiltonian Systems and Related Topics, pp. 177–202 (1987)

  9. Mather J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207, 169–207 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mather J.: Variational constuction of connecting orbits. Ann. Inst. Fourier(Grenoble) 43(5), 1349–1386 (1993)

    MATH  MathSciNet  Google Scholar 

  11. Perry A.D., Wiggins S.: KAM tori are very sticky. Physica D 71, 102–121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Salamon D., Zehnder E.: KAM theory in configuration space. Comment. Math. Helv. 64, 84–132 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Liang.

Additional information

For the more exact form, please see Theorem 2 for details.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Yan, J. Strong Stability of KAM Tori: from the Point of View of Viscosity Solutions of H-J Equations. J Dyn Diff Equat 21, 353–370 (2009). https://doi.org/10.1007/s10884-009-9131-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-009-9131-z

Keywords

Navigation