Skip to main content
Log in

A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

A new geometric criterion is derived for the existence of chaos in continuous-time autonomous systems in three-dimensional Euclidean spaces, where a type of Smale horseshoe in a subshift of finite type exists, but the intersection of stable and unstable manifolds of two points on a hyperbolic periodic orbit does not imply the existence of a Smale horseshoe of the same type on any cross section of these two points. This criterion is based on the existence of a hyperbolic periodic orbit, differing from the classical equilibrium-based Shilnikov criterion and the condition of transversal homoclinic or heteroclinic orbit of a Poincaré map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bertozzi AL. Heteroclinic orbits and chaotic dynamics in planar fluid flows. SIAM J Math Anal 1988;19:1271–1294.

    Article  MathSciNet  MATH  Google Scholar 

  2. Birman JS, Williams RF. Knotted periodic orbits in dynamical systems-1 Lorenz’s equations. Topology 1983;22:47–82.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurcation Chaos 1999;9:1465–1466.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A. Hidden attractors in dynamical systems. Phys Rep 2016;637: 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  5. Eckert M. 2013. Arnold sommerfeld: Science, life and turbulent times 1868–1951, Springer.

  6. Jafari S, Pham V-T, Moghtadaei S, Kingni S. The relationship between chaotic maps and some chaotic systems with hidden attractors. Int J Bifurcation Chaos 2016;26(8 pages):1650211.

    Article  MathSciNet  MATH  Google Scholar 

  7. Jafari S, Sprott J, Nazarimehr F. Recent new examples of hidden attractors. Eur Phys J Special Topics 2015;224:1469–1476.

    Article  Google Scholar 

  8. Jafari J, Sprott J, Pham V-T, Li CB. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 2016;86:1349–1358.

    Article  Google Scholar 

  9. Jiang H, Liu Y, Wei Z, Zhang L. Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn 2016;85:2719–2727.

    Article  MathSciNet  Google Scholar 

  10. Leonov G, Kuznetsov N. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurcation Chaos 2013;23(69 pages):1330002.

    Article  MathSciNet  MATH  Google Scholar 

  11. Leonov G, Kuznetsov N. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl Math Comput 2015;256:334–343.

    MathSciNet  MATH  Google Scholar 

  12. Leonov G, Kuznetsov N, Vagaitsev V. Localization of hidden Chua’s attractors. Phys Lett A 2011;375:2230–2233.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lorenz E. Deterministic non-periodic flow. J Atmos Sci 1963;20: 130–141.

    Article  MATH  Google Scholar 

  14. Lü J, Chen G. Generating multiscroll chaotic attractors: Theories, methods and applications. Int J Bifurcation Chaos 2006;16:775–858.

    Article  MathSciNet  MATH  Google Scholar 

  15. Melnikov VK. On the stability of the center for time periodic perturbations. Trans Moscow Math Soc 1963;12:1–57.

    MathSciNet  Google Scholar 

  16. Mihajlovic N, van Veggel AA, van de Wouw N, Nijmeijer H. Analysis of frictin induced limit cycling in an experimental drill string system. J Dyn Syst Meas Control 2004;126:709–720.

  17. Molaie M, Jafari S, Sprott J, Golpayegani M. Simple chaotic flows with one stable equilibrium. Int J Bifurcation Chaos 2013;23(7 pages):1350188.

    Article  MathSciNet  MATH  Google Scholar 

  18. Moser J. Stable and Random Motions in Dynamical Systems. Princeton: Princeton University Press; 1973.

    MATH  Google Scholar 

  19. Palis Jr J, de Melo W. Geometric Theory of Dynamical Systems, An Introduction. New York: Springer; 1982. translated by A. K. Manning edition.

    Book  Google Scholar 

  20. Pikovski AS, Rabinovich MI, Trakhtengerts VY. Onset of stochasticity in decay confinement of parametric instability. J Exp Theor Phys 1978;47: 715–719.

    Google Scholar 

  21. Rabinovich M. Stochastic self-oscillations and turbulence. Usp Fiz Nauk 1978;125:123–168.

    Article  MathSciNet  Google Scholar 

  22. Robinson C. Dynamical Systems: Stability, Symbolic Dynamics and Chaos. Florida: CRC Press; 1999.

    MATH  Google Scholar 

  23. Shilnikov LP. A case of the existence of a denumerable set of periodic motions. Sov Math Dokl 1965;6:163–166.

    Google Scholar 

  24. Shilnikov LP. The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus. Sov Math Dokl 1967;8:54–58.

    Google Scholar 

  25. Shilnikov LP. A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Math USSR Sbornik 1970;10:91–102.

    Article  Google Scholar 

  26. Smale S. Diffeomorphisms with many periodic points, Chapter Diff. Combin. Topology. Princeton: Princeton University Press; 1963, pp. 63–86.

    Google Scholar 

  27. Sommerfeld A. Beitrage zum dynamischen ausbau der festigkeitslehre. Z Verein deutscher Ingr 1902;46:391–394.

    MATH  Google Scholar 

  28. Sprott J. Some simple chaotic flows. Phys Rev E 1994;50:R647–R650.

    Article  MathSciNet  Google Scholar 

  29. Wang X, Chen G. Constructing a chaotic system with any number of equilibria. Nonlinear Dyn 2013;71:429–436.

    Article  MathSciNet  Google Scholar 

  30. Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed. New York: Springer; 2003.

    MATH  Google Scholar 

  31. Williams RF. Lorenz knots are prime. Ergod Th Dynam Sys 1984; 4:147–163.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang X, Chen G. Polynomial maps with hidden complex dynamics. Discrete Contin Dyn Syst-B 2019;24:2941–2954.

    MathSciNet  MATH  Google Scholar 

  33. Zhang X, Shi Y. Coupled-expanding maps for irreducible transition matrices. Int J Bifurcation Chaos 2010;20:3769–3783.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang X, Shi Y, Chen G. Some properties of coupled-expanding maps in compact sets. Proc Amer Math Soc. 2013;141:585–595.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Qigui Yang and Dr. Yousu Huang for carefully reading the manuscript and pointing out several mistakes, improving our presentation greatly. The authors would like to thank the reviewers for their comments and suggestions, which help significantly improve the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (No. 11701328) and Young Scholars Program of Shandong University, Weihai (No. 2017WHWLJH09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, G. A Geometric Criterion for the Existence of Chaos Based on Periodic Orbits in Continuous-Time Autonomous Systems. J Dyn Control Syst 29, 71–93 (2023). https://doi.org/10.1007/s10883-021-09582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-021-09582-x

Keywords

Mathematics Subject Classification (2010)

Navigation